




免费预览已结束,剩余2页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
附件一主备教案2. 2.2 向量的减法运算及其几何意义教学目标:1、 了解相反向量的概念;2、掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3、通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.教学重点:向量减法的概念和向量减法的作图法.教学难点:减法运算时方向的确定.学 法:减法运算是加法运算的逆运算,学生在理解相反向量的基础上结合向量的加法运算掌握向量的减法运算;并利用三角形做出减向量.教 具:多媒体或实物投影仪,尺规授课类型:新授课教学思路:一、 复习:向量加法的法则:三角形法则与平行四边形法则a b d c 向量加法的运算定律:例:在四边形中,cb+ba+bc= .解:cb+ba+bc=cb+ba+ad=cd .二、 提出课题:向量的减法1 用“相反向量”定义向量的减法(1) “相反向量”的定义:与a长度相同、方向相反的向量.记作 -a(2) 规定:零向量的相反向量仍是零向量.-(-a) = a. 任一向量与它的相反向量的和是零向量.a + (-a) = 0 如果a、b互为相反向量,则a = -b, b =-a, a + b = 0 (3) 向量减法的定义:向量a加上的b相反向量,叫做a与b的差. 即:a - b = a + (-b) 求两个向量差的运算叫做向量的减法.2 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算:oabbaba-b 若b + x = a,则x叫做a与b的差,记作a - b3 求作差向量:已知向量a、b,求作向量 (a-b) + b = a + (-b) + b = a + 0 = a 作法:在平面内取一点o, 作= a, = b 则= a - b 即a - b可以表示为从向量b的终点指向向量a的终点的向量. 注意:1表示a - b.强调:差向量“箭头”指向被减数oababb-bbba+ (-b)ab 2用“相反向量”定义法作差向量,a - b = a + (-b) 显然,此法作图较繁,但最后作图可统一.4 探究:) 如果从向量a的终点指向向量b的终点作向量,那么所得向量是b - a.a-baabbboa-baabboaoba-ba-bbao-b)若ab, 如何作出a - b?三、 例题:例1、(p 例三)已知向量a、b、c、d,求作向量a-b、c-d. 解:在平面上取一点o,作= a, = b, = c, = d, abcbadcdo 作, , 则= a-b, = c-da b d c例2、平行四边形中,a,b,用a、b表示向量、.解:由平行四边形法则得: = a + b, = = a-b变式一:当a, b满足什么条件时,a+b与a-b垂直?(|a| = |b|)变式二:当a, b满足什么条件时,|a+b| = |a-b|?(a, b互相垂直)变式三:a+b与a-b可能是相当向量吗?(不可能, 对角线方向不同)练习:98四、 小结:向量减法的定义、作图法|五、 作业:p103第4、题六、 板书设计(略)2.2.2 向量的减法运算及其几何意义课前预习学案预习目标:复习回顾向量的加法法则及其运算律,为本节新授内容做好铺垫。 预习内容:向量加法的法则: 。 a b d c 向量加法的运算定律: 。例:在四边形中,cb+ba+bc= .解:cb+ba+bc=cb+ba+ad=cd .提出疑惑:向量有加法运算,那么它有减法吗?课内探究学案学习目标:1、 了解相反向量的概念;2、掌握向量的减法,会作两个向量的减向量,并理解其几何意义;3、通过阐述向量的减法运算可以转化成向量的加法运算,使学生理解事物之间可以相互转化的辩证思想.学习过程:一、提出课题:向量的减法1 用“相反向量”定义向量的减法(1) “相反向量”的定义: 。(2) 规定:零向量的相反向量仍是 .-(-a) = a. 任一向量与它的相反向量的和是 .a + (-a) = 0 如果a、b互为相反向量,则a = -b, b = -a, a + b = 0 (3) 向量减法的定义: . 即: 求两个向量差的运算叫做向量的减法.2 用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a,则x叫做a与b的差,记作 。求作差向量:已知向量a、b,求作向量 (a-b) + b = a + (-b) + b = a + 0 = a 作法: 注意:1表示a -b.强调:差向量“箭头”指向 2用“相反向量”定义法作差向量,a -b = 。 显然,此法作图较繁,但最后作图可统一.3 探究:) 如果从向量a的终点指向向量b的终点作向量,那么所得向量是 。a-baabbboa-baabboaoba-ba-bbao-b)若ab, 如何作出a - b?二、例题:例1、(p 例三)已知向量a、b、c、d,求作向量a-b、c-d. 例2、平行四边形中,a,b,用a、b表示向量、.变式一:当a, b满足什么条件时,a+b与a-b垂直?(|a| = |b|)变式二:当a, b满足什么条件时,|a+b| = |a-b|?(a, b互相垂直)变式三:a+b与a-b可能是相当向量吗?(不可能, 对角线方向不同)课后练习与提高1.在abc中, =a, =b,则等于( )a.a+b b.-a+(-b) c.a-b d.b-a2.o为平行四边形abcd平面上的点,设=a, =b, =c, =d,则a.a+b+c+d=0 b.a-b+c-d=0 c.a+b-c-d=0 d.a-b-c+d=0.如图,在四边形abcd中,根据图示填空:a+b= ,b+c= ,c-d= ,a+b+c-d= .、如图所示,o是四边形abcd内任一点,试根据图中给出的向量,确定a、b、c、d的方向(用箭头表示),使a+b=,c-d=,并画出b-c和a+d. 讨论记录1从实际问题出发引入新课,不但展示了教学的主要内容,而且还激发了学生学习兴趣。如可以通过物理中力与加速度的关系,位移与速度的关系等实际问题引入实数与向量的积。2实数与向量的三个运算律,为了降低难度课本上没有证明,可以结合图形给学生直观解释,程度好的学生可以适当指导给出证明,证明的关键是向量的两要素:方向和大小
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高校体育教学计划及活动方案模板
- 新版小学英语全册教案设计方案
- 森林防火系列活动方案
- 流体在管道内的流动课件
- 小学英语口语交际能力训练方案
- 派出所治安业务培训课件
- 派出所夏季消防知识培训课件
- (2025年标准)电力收购协议书
- 洪灾消防知识培训内容课件记录
- (2025年标准)地暖协议书
- 2023年山东水发集团有限公司招聘笔试题库及答案解析
- SB/T 10941-2012自动制冰机试验方法
- GB/T 6804-2008烧结金属衬套径向压溃强度的测定
- 沙盘游戏治疗(2017)课件
- SY∕T 5280-2018 原油破乳剂通用技术条件
- 苏教版五年级数学下册【全册课件完整版】
- 班组施工任务单
- 职业健康检查结果告知书模板
- 2022年小型发电站设备缺陷管理制度
- 慢性肾衰竭(慢性肾脏病)诊疗指南(内容清晰)
- 钢结构模块化安装施工方案
评论
0/150
提交评论