


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3. 2 简单的三角恒等变换三维目标1.通过经历二倍角的变形公式推导出半角的正弦、余弦和正切公式,能利用和与差的正弦、余弦公式推导出积化和差与和差化积公式,体会化归、换元、方程、逆向使用公式等数学思想,提高推理能力.2.理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变换在数学中的应用.3.通过例题的解答,引导对变换对象目标进行对比、分析,形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高推理能力.重点难点教学重点:1.半角公式、积化和差、和差化积公式的推导训练.2.三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.教学过程引言:三角函数的化简、求值、证明,都离不开三角恒等变换.学习了和角公式,差角公式,倍角公式以后,我们就有了进行三角变换的新工具,从而使三角变换的内容、思路和方法更加丰富和灵活,同时也为培养和提高我们的推理、运算、实践能力提供了广阔的空间和发展的平台.应用:例1、 试以cos表示sin2 ,cos2, tan2.例2、 练习:求证tan=。例2、证明(1)sincos=sin(+)+sin(-);(2)sin+sin=2sin.练习:课后练习2(2)、3(2)、题例3、 求函数的周期,最大值和最小值。练习:求下列函数的最小正周期,递增区间及最大值。 (!) (2) (3)阅读内容:函数y=asinx+bcosx的变形与应用(辅助角公式)函数y=asinx+bcosx=(cosx),(,则有asinx+bcosx=(sinxcos+cosxsin)=sin(x+).因此,我们有如下结论:asinx+bcosx=sin(x+),其中tan=.例4、 如图,已知opq是半径为1,圆心角为的扇形,c是扇形弧上的动点,abcd是扇形的内接矩形.记cop=,求当角取何值时,矩形abcd的面积最大?并求出这个最大面积.课堂小结1、回顾前面学习的数学知识:和、差、倍角的正弦、余弦公式的应用,半角公式、代数式变换与三角变换的区别与联系.积化和差与和差化积公式及其推导,三角恒等式与条件等式的证明.2、本节课还研究了通过三角恒等变形,把形如y=asinx+bcosx的函数转化为形如y=asin(x+)的函数,从而能顺利考查函数的若干性质,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 南通彩钢板屋顶施工方案
- 61社群活动策划方案公司
- 大开挖土方施工方案
- 小红书口碑营销方案设计
- 送气工行为规范
- 工程问题专家咨询方案
- 亲子徒步爬山活动方案策划
- 2025年会计从业资格考试专项训练试卷:财务报表编制与分析
- 新零售行业新零售数字化经营
- 2025继续教育公需课必修题库及参考答案
- 行政执法工作培训
- 无人机集群控制技术-深度研究
- 合伙开工厂 合同范例
- 比亚迪秦EV新能源汽车整车控制系统
- 部编版小学道德与法治六年级上册配套表格式教案(全册)
- 商务星球版八年级地理上册4.1《因地制宜发展农业》听课评课记录
- 厨房6S管理培训
- 锂电池pack生产线可行性报告
- 2025年政府机关《干部履历表》标准模板
- 万达2024年连锁商业体合作伙伴协议3篇
- 临床常用他评量表
评论
0/150
提交评论