广东省阳东广雅中学高中数学论文《函数定义域》 新人教版.doc_第1页
广东省阳东广雅中学高中数学论文《函数定义域》 新人教版.doc_第2页
广东省阳东广雅中学高中数学论文《函数定义域》 新人教版.doc_第3页
广东省阳东广雅中学高中数学论文《函数定义域》 新人教版.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省阳东广雅中学高中数学论文函数定义域 新人教版【摘要】数学教学主要是解题教学,通过解题让学生领会数学的知识和数学思想方法,在解题中体会数学的魅力。变量数学反映了运动变化的思想,它是近代数学的核心思想即函数的思想,那么自变量的范围即整个函数的定义域就显得至关重要了,因为它是研究一切函数性质的基础。【关键字】函数 自变量 定义域函数作为高中数学的主要知识之一,连接整个高中数学的始终。函数的三要素:定义域、对应法则和值域。而我们通过学习了函数之后就发现值域是有定义域和对应法则共同确定的。所以函数的值域等相关函数的性质都是限制在函数的定义域里面研究的。求解函数的定义域(或变量的允许值范围)似乎是非常简单的,只是列出不等式或者不等式组求解自变量x的取值范围,然而在解决问题中如果不加以注意,常常会出现错误。在平时的教学中,应注重函数的定义域的作用和影响,并且能够培养学生严密的数学逻辑思维。一、 函数关系式与定义域函数关系式包括定义域和对应法则,所以在求函数的关系式时必须要考虑所求函数关系式的定义域,否则所求函数关系式可能是错误。如:例1:某一个近似等腰三角形的梯田周长为40,其中底边长为y,腰长为x,试写出该三角形的底边长y与腰长x的函数关系式? 解:由题意得: 故函数关系式为:如果解题到此为止,则本题的函数关系式还欠完整,缺少自变量的范围。也就说学生的解题思路不够严密,因为现实生活中的长度不可能是一个负数。当自变量取大于20的数时,y的值是负数,即三角形的腰长为负数,这与实际问题相矛盾。又或者自变量的值为负数时,也是不符合实际的。并根据构成三角形的任意两边都大于第三边的结论可知:,即,所以最后我们还应补上自变量的范围: 即:函数关系式为: ()这个例子说明,在用函数方法解决实际问题时,必须要注意到函数自变量的取值范围对实际问题的影响。若考虑不到这一点,就体现出学生思维缺乏严密性。若注意到定义域的变化,就说明学生的解题思维过程体现出较好思维的严密性。二、函数奇偶性与定义域判断函数的奇偶性,应先考虑该函数的定义域区间是否关于坐标原点成中心对称,如果定义域区间是关于坐标原点不成中心对称,则函数就无奇偶性可谈。否则要用奇偶性定义加以判断。如:例2:判断函数的奇偶性 解: 定义域区间2,4关于坐标原点不对称 函数是非奇非偶函数 整个的解答过程体现了严密的数学逻辑思维。但是如果学生不注意函数定义域,那么判断函数的奇偶性得出如下错误结论: 函数是奇函数错误剖析:因为以上做法是没有判断该函数的定义域区间是否关于原点成中心对称的前提下直接加以判断所造成,这是学生极易忽视的步骤,也是造成结论错误的原因。三、 函数单调性与定义域函数单调性是指函数在给定的定义域区间上函数自变量增加时,函数值随着增减的情况,所以讨论函数单调性必须在给定的定义域区间上进行。如:例3:指出函数的单调区间 解:先求定义域: 函数定义域为 令,知在上时,u为减函数, 在上时, u为增函数。 又 函数在上是减函数,在上是增函数。即函数的单调递增区间,单调递减区间是。在做题时,没有在定义域的两个区间上分别考虑函数的单调性,就说明学生对函数单调性的概念一知半解,没有理解,在做练习或作业时,只是对题型,套公式,而不去领会解题方法的实质,也说明学生的思维缺乏深刻性。四、函数最值与定义域函数的最值是指函数在给定的定义域区间上能否取到最大(小)值的问题。如果不注意定义域,将会导致最值的错误。如:例4:求函数在2,5上的最值 解: 当时,初看结论,本题似乎没有最大值,只有最小值。产生这种错误的根源在于学生是按照求二次函数最值的思路,而没有注意到已知条件发生变化。这是思维呆板性的一种表现,也说明学生思维缺乏灵活性。其实以上结论只是对二次函数在r上适用,而在指定的定义域区间上,它的最值应分如下情况: 当时,在上单调递增函数; 当时,在上单调递减函数; 当时,在上最值情况是: , 即最大值是中最大的一个值。故本题还要继续做下去: 函数在2,5上的最小值是 4,最大值是12 这个例子说明,在函数定义域受到限制时,若能注意定义域的取值范围对函数最值的影响,并在解题过程中加以注意,便体现出学生思维的灵活性。五、 函数值域与定义域函数的值域是该函数全体函数值的集合,当定义域和对应法则确定,函数值也随之而定。因此在求函数值域时,应注意函数定义域。如:例5:求函数的值域 错解:令 故所求的函数值域是 剖析:经换元后,应有,而函数在0,+)上是增函数, 所以当t=0时,ymin=11 故所求的函数值域是11, +)以上例子说明,变量的允许值范围是何等的重要,若能发现变量隐含的取值范围,精细地检查解题思维的过程,就可以避免以上错误结果的产生。也就是说,学生若能在解好题目后,检验已经得到的结果,善于找出和改正自己的错误,善于精细地检查思维过程,便体现出良好的思维批判性。综上所述,在求解函数函数关系式、单调性、奇偶性、最值(值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论