电子信息工程.doc_第1页
电子信息工程.doc_第2页
电子信息工程.doc_第3页
电子信息工程.doc_第4页
电子信息工程.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二章 现代LCD技术第2.1节 液晶显示原理 液晶显示原理起源是在 1888 年时,由奥地利植物学家莱尼兹发现了一种特殊的混合物质,物质在常态下是处於固态和液态之间,不仅如此,其还兼具固态物质和液态物质的双重特性。在那个年代并没有对於此物质的适当称呼,因此就称之为 Liquid Crystal(顾名思义 就是液态的晶体)。而液晶的组成物质是一种有机化合物,也就是以碳为中心所构成的化合物。液晶这一呈液体状的化学物质,象磁场中的金属一样,当受到外界电场影响时,其分子会产生精确的有序排列。如果对分子的排列加以适当的控制,液晶分子将会允许光线穿越。液晶的这些特点使得它可以被用来当作一种开关,即可以阻碍光线,也可以允许光线通过。液晶单元的底层是由细小的脊构成的,这些脊的作用是让分子呈平行排列。上表面也是如此,在这两侧之间的分子平行排列,不过当上下两个表面之间呈一定的角度时,液晶成了随着两个不同方向的表面进行排列,就会发生扭曲。结果便是这个扭曲了的螺旋层使通过的光线也发生扭曲。如果电流通过液晶,所有的分子将会按照电流的方向进行排列,这样就会消除光线的扭转。如果将一个偏振滤光器放置在液晶层的上表面,扭转的光线通过了,而没有发生扭转的光线将被阻碍。因此可以通过电流的通断改变LCD中的液晶排列,使光线在加电时射出,而不加电时被阻断。也有某些设计了省电的需要,有电流时,光线不能通过,没有电流时,光线通过。 无论是笔记本电脑还是桌面系统,采用的LCD显示屏都是由不同部分组成的分层结构。位于最后面的一层是由荧光物质组成的可以发射光线的背光层。背光层发出的光线在穿过第一层偏振过滤层之后进入包含成千上万水晶液滴的液晶层。液晶层中的水晶液滴都被包含在细小的单元格结构中,一个或多个单元格构成屏幕上的一个像素。当LCD中的电极产生电场时,液晶分子就会产生扭曲,从而将穿越其中的光线进行有规则的折射,然后经过第二层过滤层的过滤在屏幕上显示出来。对于简单的单色LCD显示器,如掌上电脑所使用的显示屏,上述结构已经足够了。但是对于笔记本电脑所采用的更加复杂的彩色显示器来说,还需要有专门处理彩色显示的色彩过滤层。通常,在彩色LCD面板中,每一个像素都是由三个液晶单元格构成,其中每一个单元格前面都分别有红色,绿色,或蓝色的过滤器。这样,通过不同单元格的光线就可以在屏幕上显示出不同的颜色。现在,几乎所有的应用于笔记本或桌面系统的LCD都使用薄膜晶体管(TFT)激活液晶层中的单元格。TFT LCD技术能够显示更加清晰,明亮的图象。早期的LCD由于是非主动发光器件,速度低,效率差,对比度小,虽然能够显示清晰的文字,但是在快速显示图象时往往会产生阴影,影响视频的显示效果,因此,如今只被应用于需要黑白显示的掌上电脑,呼机或手机中。受LCD液晶层中实际单元格数量的影响,LCD显示器一般只能提供固定的显示分辨率。如果用户需要将800X600的分辨率提升到1024X768的话,只能借助于特定软件的帮助实现模拟分辨率。 与传统的CRT显示器一样,应用于桌面系统的LCD也被设计成接收波形模拟信号,而非直接由PC产生的数字脉冲信号。这主要是因为目前桌面系统中的绝大多数标准显卡仍然是在将视频信息由最初的数字信号转化为模拟信号之后再传送给显示器显示。虽然桌面系统的LCD被设计成可以接收模拟信号,但是LCD本身仍然只能处理数字信息,因此当从显卡接收到模拟信号之后,LCD需要将模拟信号再还原为数字信号后进行处理。为了解决上述问题带来的显示上的不足,最新的桌面LCD采用了一种特殊的带有数字连接器图形卡直接向LCD显示器传送数字信号。 随着LCD技术的不断成熟和发展,显示屏幕的大小正在逐步增加。以往的笔记本电脑中都是采用8英寸(对角线)固定大小的LCD显示器,现在,基于TFT技术的桌面系统LCD能够支持14到18英寸的显示面板。因为生产厂商是按照实际可视区域的大小来测定LCD的尺寸,而非向CRT那样由显象管的大小决定,所以一般情况下,15英寸LCD的大小就相当于传统的17英寸彩显的大小。液晶显示的驱动就是用来调整施加在液晶显示器件电极上的电位信号的相位、峰值、频率等,建立驱动电场,以实现液晶显示器件的显示效果。液晶显示的驱动方式有许多种,常用的驱动方法有:静态驱动法和动态驱动法。对于TN及STN-LCD一般采用静态驱动或多路驱动方式。这两种方式相比较各有优缺点。静态驱动响应速度快、耗电少、驱动电压低,但驱动电极度数必须与显示笔段数相同,因而用途不如多路驱动广。1.静态驱动法 静态驱动法是获得最佳显示质量的最基本的方法。它适用于笔段型液晶显示器件的驱动。表一示出此类液晶显示器件的电极结构,当多位数字组合时,各位的背电极BP是连接在一起的。振荡器的脉冲信号经分频后直接施加在液晶显示器件的背电极BP上,而段电极的脉冲信号是由显示选择信号A与时序脉冲通过逻辑异或合成产生,当某位显示像素被显示选择时,A1,该显示像素上两电极的脉冲电压相位相差180。,在显示像素上产生2V的电压脉冲序列,使该显示像素呈现显示特性;当某位显示像素为非显示选择时,A0,该显示像素上两电极的脉冲电压相位相同,在显示像素上合成电压脉冲为0V,从而实现不显示的效果。这就是静态驱动法。为了提高显示的对比度,适当地调整脉冲的电压即可。 2.动态驱动法 当液晶显示器件上显示像素众多时,如点阵型液晶显示器件,为了节省庞大的硬件驱 动电路,在液晶显示器件电极的制作与排列上作了加工,实施了矩阵型的结构,即把水平一组显示像素的背电极都连在一起引出,称之为行电极,把纵向一组显示像素的段电极都连接起来一起引出,称之为列电极。在液晶显示器上每一个显示像素都由其所在的列与行的位置唯一确定。在驱动方式上相应地采用了类同于CRT的光栅扫描方法。液晶显示的动态驱动法是循环地给行电极施加选择脉冲,同时所有为显示数据的列电极给出相应的选择或非选择的驱动脉冲,从而实现某行所有显示像素的显示功能,这种行扫描是逐行顺序进行的,循环周期很短,使得液晶显示屏上呈现出稳定的图象。我们把液晶显示的扫描驱动方式称为动态驱动法。 第2.2节 现代LCD技术简介在七十年代初液晶开始作为一种显示媒体使用以来,液晶的应用范围被逐渐拓宽,到目前已涉及游戏机,手机/电话机,电视,笔记本电脑/掌上电脑,DC/DV以及液晶显示器等领域。在1984年,欧美提出STN-LCD,而同时TFT-LCD技术也被提出,但仍不成熟,在80年代末,在日本掌握了STN-LCD的生产技术,在93年,日本又掌握了TFT-LCD生产技术,液晶显示器开始向廉价低成本的方向发展,随后DSTN-LCD诞生;另一方面高端的薄膜式液晶管TFT-LCD发展,97年,日本建成了一大批大基板尺寸的第三代TFT-LCD生产线。在此期间,韩国和我国台湾开始介入液晶显示器生产领域,我国内地企业也引进生产线,生产TN-LCD,东亚地区逐渐发展成为世界液晶显示器的主要生产地,第三代半及第四代TFT-LCD生产线开始建立,日本,韩国和中国(含台湾省)在液晶显示器生产及技术上开始走在世界前列。大家知道,液晶是一种具有规则性分子排列的有机化合物,它既不是固体也不是液体,它是介于固态和液态之间的物质,把它加热时它会呈现透明的液体状态,把它冷却时它则会出现结晶颗粒的浑浊固体状态。液晶按照分子结构排列的不同分为三种:粘土状的smectic液晶,细柱形的Nematic液晶和软胶胆固醇状的Cholestic液晶。这三种液晶的物理特性各不相同,而第二类的细柱形的Nematic液晶最适于制造液晶显示器。按物理结构常见的液晶显示器可分为以下几种:中文名英文名简称属性扭曲向外形Twisted NematicTN无源矩阵LCD超扭曲向外形Super TNSTN无源矩阵LCD双层扭曲向外形Dual Scan Tortuosity NomogaraphDSTN无源矩阵LCD薄膜晶体管型Thin Film TransistorTFT有源矩阵LCD表2.1常见液晶显示器大家从上面就可看出TN、STN、DSTN三种液晶都属于无源矩阵LCD,它们的原理基本相同,不同之处只是各个液晶分子的扭曲角度略有差异而已,其中DSTN(俗称“伪彩”)在早期的笔记本电脑显示器及掌上游戏机上广为应用,但由于必须借用外界光源来显像所以其有很大的应用局限性,但这些早期的反射型单色或彩色没有背光设计的LCD可以做的更薄、更轻和更省电,如果能在技术上对其进行革新这些东东对于掌上型电脑和游戏机来说还是非常有用的。而STN超扭曲向外型无源矩阵LCD则是我们今天小型液晶显示器上应用的主流,它具有屏幕反映速度快,对比度好,亮度高,可视角度大等优点。最早的液晶显示器TN它由玻璃板,偏光器、ITO膜组成两个夹层等组成,它是所有液晶显示器技术原理的鼻祖。而TN系列液晶显示器一样由玻璃基板、ITO膜、配向膜、偏光板等部分组成,它也同样采用两夹层间填充液晶分子的设计,只不过把TN上部夹层的电极改成FET晶体管,而下层改为共同电极。第2.3节 LCD的特点、应用和市场的发展现状 LCD也就是液晶显示器的英文简称,它可以显示汉字、字符和图形,同时还具有低压、低功耗、体积小、重量轻和超薄等很多优点。随着嵌入式系统的应用越来越广泛,功能的越来越强大,许多工作在Linux下的图形界面软件包的开发和移植工作中都涉及到底层LCD驱动的开发问题,因此在嵌入式系统中开发LCD驱动得以广泛运用。相比于其它终端显示设备,液晶显示器具有低压、微功耗、显示信息量大、体积小等优点,在移动通信终端、便携计算机、GPS卫星定位系统等领域有广泛用途,成为使用量最大的显示器件。液晶显示控制器作为液晶驱动电路的核心部件通常由集成电路组成,通过为液晶显示系统提供时序信号和显示数据来实现液晶显示。随着大容量可编程逻辑器件的不断涌现,FPGA技术越来越多地应用在大规模集成电路的设计中。FPGA(Field Programmable Gate Array)具有功能强大、集成度高、灵活性好、速度快、高稳定性和易于实现复杂逻辑功能等优点。以FPGA为硬件编程语言来实现的LCD控制器,具有易于集成到片上系统 、方便修改、适应不同液晶显示器的特点。与传统嵌入式系统设计不同,Nios系统的开发分硬件开发和软件开发两个流程,SOPC是可编程技术发展到一定阶段的必然产物。它作为SOC和PLD/FPGA相结合的一项综合技术,集合了两者的优点,适合于两者的应用领域。现代社会,以计算机技术为核心的信息技术迅速发展,以及信息的爆炸式增长,人类获得的视觉信息很大部分是从各种各样的电子显示器件上获得的,对这些显示器件的要求也越来越高。在这些因素的驱动下,显示技术也取得了飞速的发展。使用FPGA/CPLD设计的液晶控制器具有很高的灵活性, 集成式的控制芯片具有包括了缩小了IC的体积、低功率消耗、降低封装基于FPGA的LCD控制器设计的成本、节省电路板的数量及体积等优点,并使材料成本及LCD后段组装成本得以降低,因此许多厂商纷纷朝向高集成度控制芯片发展,并积极开发视讯应用的控制芯片。而最新趋势Smart Panel,在制程上则有简化流程、减少材料成本等优点。根据相关资料显示,Smart Panel可降低约10%15%的成本,这也是国外一些大厂所钟爱的方式。 为降低控制IC 成本,众多IC厂商纷纷推出集成式的单芯片控制IC。美国的Genesis最早推出集成式IC,将ADC、Scaler、OSD (内置菜单)与PLL(锁相环)为一颗单芯片控制IC。接着更进一步集成入DVI 组件,形成LCD 双模控制IC。其组件集成数量持续增多,并渐渐添加Video 的功能。当前Genesis 最高集成度的产品,集成入的组件已经包括ADC、Scaler、PLL、OSD、TCON 与DVI,仅剩Video 的功能以及SDRAM 的组件尚未集成。 随着市场竞争的加剧,液晶显示器厂商的成本压力越来越大,必须采用更简单的线路设计实现液晶显示器的功能,以期降低成本,才能在市场竞争中立于不败之地。 LCD控制IC必将向高集成度方向发展,以满足市场需要。而在LCD的应用以及市场方面,虽然手机仍然是中小尺寸液晶显示屏(LCD)的最主要应用设备,但便携导航设备(PND)、数码相框和MP3/便携媒体播放器(PMP)等新型设备,正在该市场的销售额中占有越来越大的份额。由于这些产品使用的显示屏大于手机所用的显示屏,因此在供应商的工厂中同样需要更多的面板,这对于LCD面板生产商来说是个绝好的机会。各种中小尺寸LCD的产能扩张和价格下降,促进了其应用领域的多元化。这又进一步刺激了需求,并吸引许多其它产品来采用中小型LCD,如白色家电和零售标牌。 大多数行业内的公司认为,为了利用手机市场和新兴产品,中小尺寸显示屏供应商必须相应地平衡和调整策略,否则就可能错失整个市场。 导航设备PND的主要功能是显示GPS信息,因此能否显示详细并准确地图影像非常关键。这使得许多PND制造商把目光转向了更加精确的小型LCD。 这方面出现的需求促使iSuppli公司把2011年PND显示屏市场的出货量预测提高到了6,050万部。2006年的出货量为1,080万部,2006-2011年出货量的年复合增长率是41.3%。Suppli以前预测2011年出货量是5,400万部。 尽管中小尺寸LCD价格下降,但2011年PND显示屏的营业额将从2006年的3.24亿美元上升到7.76亿美元,年复合增长率为19.1%。2007年一年,PND显示屏销售额将比2006年的3.24亿美元增长近一倍,达到6.35亿美元。 媒体播放器但PND不是推动中小尺寸显示屏市场繁荣的唯一消费电子产品。MP3/PMP目前是使此类显示屏出货量增长最快的领域之一。 iSuppli公司预测,2011年底MP3/PMP单位出货量将达到2.05亿,而2007年预计为1.63亿。 基于FPGA的LCD控制器设计这相当于2011年显示屏销售额将达到16亿美元,略低于2007年的17亿美元,这主要是因为中小型LCD价格随着产能扩张和制造工艺改进而不断下降。推动显示屏单位出货量增长的因素包括: 消费电子公司苹果和它的iPod产品线,以及距苹果最近的竞争对手紧追不舍,从而推动MP3/PMP市场整体增长。 MP3音乐播放器变身进入了PMP领域。有源矩阵LCD供应商正在紧盯这个市场,以防止AMOLED供应商染指。 因为PMP是消费电子产业中增长最快的领域之一,而且随着更多的产品涌现,将需要更多的LCD来满足需求。 数码相框和便携DVD播放器等其它应用每年需要的显示屏越来越多。这些应用需要较大的显示屏(7.0英寸),因此它们的需求增长可能对产能分配和供需平衡造成较大的影响。第2.3节 STN-LCD技术的显示原理 STN型的显示原理与TN相类似,不同的是TN扭转式向列场效应的液晶分子是将入射光旋转90度,而STN超扭转式向列场效应是将入射光旋转180270度。传统的TN-LCD(扭曲向外液晶显示器件)具有电光响应速度缓慢,阀值特性很不明显的弱点,这给多路驱动造成困难,使其在大信息量的视频显示上受到限制。通过将TN-LCD液晶分子的扭曲角度由90加大到180至360之间就可以制成STN-I CD(超扭曲向外液晶显示器件)。STN-I CD大大提高了显示特性,目前几乎所有的点阵图形和大部分点阵字符LCD均已采用了STN模式,STN-I CD技术在液晶产业中已处于逐渐成熟和完善的阶段。将涂有透明导电层的玻璃上光刻形成特定的透明电极,在两片这种玻璃授板间夹上一层STN-I CD材料,四周密封,形成一个厚度仅为微米量级的扁平液晶盒。由于玻璃内表面涂有定向膜并进行了定向处理,盒内液晶分子沿玻璃表面平行排列,如果两片玻璃内表面定向层处理的方向呈一定的夹角,则液晶分子在这两片玻璃之间以角度扭曲由于STN-LCD液晶分子在盒中的扭曲螺旋距比可见光波长大的多,所以当垂直于玻璃表面一侧的直线偏振光入射后,其偏光方向在通过整个赦晶层后会被扭曲角度一侧的直线偏振光入射后,其偏光方向在通过整个赦晶层后回被扭曲角度另一侧射出,因此此液晶盒具有在成角度偏振片间透光的作用和功能。如果在液晶盒上施加一个电压并达到一定值后,液晶分子长轴将开始沿电场方向倾斜,当电压达到2倍阀值电压后,除电极表面的分子外,所有的赦晶盒内两电极之间的液晶分子都变成沿电场方向的再排列,这时角度旋光功能消失,在成角度的偏光片之间失去了旋光作用使器件不能再透光。因此,将STN LCD放在成角度的偏振片之间就可以用给液晶盒通电的办法使光改变其透过和遮住状态从而实现显示的功能。液晶屏幕的驱动方式:单纯矩阵驱动方式是由垂直与水平方向的电极所构成,选择要驱动的部分由水平方向电压来控制,垂直方向的电极则负责驱动液晶分子。在TN与STN型的液晶显示器中,所使用单纯驱动电极的方式,都采用X、Y轴的交叉方式来驱动,因此如果显示部分越做越大的话,那么中心部分的电极反应时间可能就会比较持久。而为了让屏幕显示一致,整体速度就会变慢。讲的简单一点,就好像是CRT显示器的屏幕更新频率不够快,那是使用者就会感到屏幕闪烁、跳动;或者是当需要3D动画显示时,但显示器的显示速度却无法跟上,显示出来的结果可能就会有延迟的现象。第2.4节 动态STN-LCD驱动方法 STN-LCD的显示效果是由于在显示像素上施加了电场的缘故,而这个电场是由显示像素前后两个电极上的电压信号所产生的。在显示像素上建立直流电场并不困难,但直流电场将导致液晶材料的化学反应和点击老化。从而迅速降低液晶材料的寿命,因此必须建立交流电场,并要求这个电场中的直流分量尽可能小,通常要求小于50mv。因此STN-LCD必须采用交流驱动。STN-LCD显示驱动方法有很多种,常用的有静态驱动法和动态驱动法。当STN-LCD显示像素众多时,若使用静态驱动法将会产生众多的引脚以及庞大的驱动电路,实现起来有困难,因此常用动态驱动法。动态驱动法中STN-LCD电极的制作和排布为矩阵型结构,即把水平一组显示像素的电极连接在一起引出称之为行电极,用COM符号表示,把纵向一组显示像素的电极连在一起引出,称之为列电极,用符号SEG表示。每个STN-LCD显示像素都由其所有行和列的位置唯一确定。动态驱动法就是采用逐行、逐环地给行电极施加选择脉冲,同时所有的列电极给出该行像素对应的选择或非选择脉冲,从而实现一行所有显示像素的驱动,循环一次称为一帧。这种扫描是逐行顺序进行的,循环周期很短,使得STN-LCD显示屏上呈现稳定的图像效果。一帧中每一行的选择时间是相等的,若一帧的扫描行数为N,则一行所占用的扫描时间为一帧的1/N,该值称为占空比系数。在特定电压下,扫描行数的增加将使占空比下降,从而引发液晶像素上交变电场有效值的下降,降低了显示质量,因而随着显示像素的增多就需要适度的提高电场电压的有效值来保证显示质量。动态驱动方式下,某一液晶像素显示效果是由施加在行电极上的选择与施加在列电极上的选择电压的台成来实现的。与该像素不在同一行及同一列上的像素都处于非选择状态下,而与该像素在同一行或同一列的像素均有选择电压加入,称为半选择点。当半选择点的电压接近液晶阀值电压时屏上将出现不应该有的半显示现象,这回使得对比速度下降,这种现象叫做“交叉效应”,在动态驱动法中可采用偏压技术来解决这一问题。平均电压法是解决“交叉效应”的有效办法,其原理是把半选择点和非选择点上的电压平均化。若显示点电压为Vlcd,则半选择点和非选择点电压为Vlcd/,其中为整数,称为偏压比。平均电压法适度提高非选择点上的电压来抵消半选择点上的电压,从而扩大选择点和半选择点的电压之间的差距,提高显示对比度,又使非选择和半选择点的显示更均匀一致。对比度是衡量液晶显示质量的重要标志。只要驱动电压的有效值足够大液晶就可以实现显示,且选通时的透过率与有效值成正比,而对比度是透过率之比,所以只要确定了选通电压有效值与非选通电压有效值之比就能预测出显示对比度的好坏。第3章 现代ARM与FPGA技术第3.1节 ARM概述 ARM(AdvancedRISCMachines),既可以认为是一个公司的名字,也可以认为是对微处理器的通称,还可以认为是一种技术的名字。 ARM处理器是一个32位元精简指令集(RISC)处理器架构,其广泛地使用在许多嵌入式系统设计 ARM处理器特点:1、 体积小、低功耗、低成本、高性能; 2、 支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件; 3、大量使用寄存器,指令执行速度更快; 4、大多数数据操作都在寄存器中完成; 5、寻址方式灵活简单,执行效率高; 6、指令长度固定。 ARM处理器系列 ARM7系列ARM9系列ARM9E系列ARM10E系列 Secur-Core系列Intel的X scaleIntel的Strong Arm ARM11系列 其中,ARM7、ARM9、ARM9E和ARM10为4个通用处理器系列,每一个系列提供一套相对独特的性能来满足不同应用领域的需求。SecurCore系列专门为安全要求较高的应用而设计。ARM处理器结构体系结构 1、 CISC(ComplexInstructionSetComputer,复杂指令集计算机)。在CISC指令集的各种指令中,大约有20%的指令会被反复使用,占整个程序代码的80%。而余下的80%的指令却不经常使用,在程序设计中只占20%。 2 RISC(ReducedInstructionSetComputer,精简指令集计算机)。RISC结构优先选取使用频最高的简单指令,避免复杂指令;将指令长度固定,指令格式和寻地方式种类减少;以控制逻辑为主,不用或少用微码控制等 RISC体系结构应具有如下特点: 1、采用固定长度的指令格式,指令归整、简单、基本寻址方式有23种。 2、使用单周期指令,便于流水线操作执行。 3、大量使用寄存器,数据处理指令只对寄存器进行操作,只有加载/存储指令可以访问存储器,以提高指令的执行效率。 除此以外,ARM体系结构还采用了一些特别的技术,在保证高性能的前提下尽量缩小芯片的面积,并降低功耗: 4、所有的指令都可根据前面的执行结果决定是否被执行,从而提高指令的执行效率。 5、可用加载/存储指令批量传输数据,以提高数据的传输效率。 6、可在一条数据处理指令中同时完成逻辑处理和移位处理。 7、在循环处理中使用地址的自动增减来提高运行效率。寄存器结构ARM处理器共有37个寄存器,被分为若干个组(BANK),这些寄存器包括: 1、31个通用寄存器,包括程序计数器(PC指针),均为32位的寄存器。 2、6个状态寄存器,用以标识CPU的工作状态及程序的运行状态,均为32位,目前只使用了其中的一部分。指令结构 ARM微处理器的在较新的体系结构中支持两种指令集:ARM指令集和Thumb指令集。其中,ARM指令为32位的长度,Thumb指令为16位长度。Thumb指令集为ARM指令集的功能子集,但与等价的 ARM代码相比较,可节省30%40%以上的存储空间,同时具备32位代码的所有优点。市场前景微软公司(2011年)宣布,下一版Windows将正式支持ARM处理器。这是计算机工业 发展历史上的一件大事,标识着x86处理器的主导地位发生动摇。目前在移动设备市场,ARM处理器的市场份额超过90%;在服务器市场,今年(2011年)就会有2.5GHz的服务器上市;在桌面电脑市场,现在又有了微软的支持。ARM成为主流,恐怕指日可待。难怪有人惊呼,Intel公司将被击败!与这场轰轰烈烈的变革相比,它的主角ARM公司却没有受到太多的关注,显得不太起眼。这家远离硅谷、位于剑桥大学的英国公司,到底是怎么走到今天的,居然能将芯片巨人Intel拉下马? 展望未来,即使Intel成功地实施了Atom战略,将x86芯片的功耗和价格大大降低,它与ARM竞争也将非常吃力。因为ARM的商业模式是开放的,任何厂商都可以购买授权,所以未来并不是Intel vs. ARM,而是Intel vs. 世界上所有其他半导体公司。那样的话,Intel的胜算能有多少呢? 第3.2节 EDA简介一、概述: EDA是电子设计自动化(Electronic Design Automation)缩写,是90年代初从CAD(计算机辅助设计)、CAM(计算机辅助制造)、CAT(计算机辅助测试)和CAE(计算机辅助工程)的概念发展而来的。EDA技术是以计算机为工具,根据硬件描述语言HDL( Hardware Description language)完成的设计文件,自动地完成逻辑编译、化简、分割、综合及优化、布局布线、仿真以及对于特定目标芯片的适配编译和编程下载等工作。典型的EDA工具中必须包含两个特殊的软件包,即综合器和适配器。综合器的功能就是将设计者在EDA平台上完成的针对某个系统项目的HDL、原理图或状态图形描述,针对给定的硬件系统组件,进行编译、优化、转换和综合,最终获得我们欲实现功能的描述文件。综合器在工作前,必须给定所要实现的硬件结构参数,它的功能就是将软件描述与给定的硬件结构用一定的方式联系起来。也就是说,综合器是软件描述与硬件实现的一座桥梁。综合过程就是将电路的高级语言描述转换低级的、可与目标器件FPGA/CPLD相映射的网表文件。适配器的功能是将由综合器产生的王表文件配置与指定的目标器件中,产生最终的下载文件,如JED文件。适配所选定的目标器件(FPGA/CPLD芯片)必须属于在综合器中已指定的目标器件系列。硬件描述语言HDL是相对于一般的计算机软件语言,如:C、PASCAL而言的。HDL语言使用与设计硬件电子系统的计算机语言,它能描述电子系统的逻辑功能、电路结构和连接方式。设计者可利用HDL程序来描述所希望的电路系统,规定器件结构特征和电路的行为方式;然后利用综合器和适配器将此程序编程能控制FPGA和CPLD内部结构,并实现相应逻辑功能的的门级或更底层的结构网表文件或下载文件。目前,就FPGA/CPLD开发来说,比较常用和流行的HDL主要有ABEL-HDL、AHDL和VHDL。 随着电子技术的不断发展与进步,电子系统的设计方法发生了很大的变化,传统的设计方法正逐步退出历史舞台,而基于EDA技术的芯片设计正在成为电子系统设计的主流。目前,大规模可编程逻辑器件(PLD)得到越来越广泛的应用,其强大的功能也逐渐从各种器件中显露出来。如今的可编程器件其自身功能愈加强大的同时,更使系统趋于小型化,高集成度和高可靠性。与此同时,器件所具有的静态可重复编程和动态在系统重构的特性,使得系统设计周期大大缩短,降低了设计费用和设计风险,极大的提高了电子系统设计的灵活性和通用性。可编程逻辑器件种类很多,其中现场可编程门阵列(FPGA)编程灵活,应用范围广。器件技术成熟,一片FPGA就可替代上百片标准器件,有多达数百条Io引脚,更主要的逻辑功能较以在一片FPGA中实现。因此,著名的可编程逻辑器件生产厂家美国Altera公司提出了基于PLD的SOC(System on Chip,片上系统)设计方案一SOPc(System on a Programmable Chip,片上可编程系统)。SOPC是SOC技术和可编程逻辑技术结合的产物,是基于FP(;A解决方案的SOC,是一种特殊的嵌入式系统。首先它是SOC,即可以由单个芯片完成整个系统的主要逻辑功能;其次,它还是可编程系统,具有灵活的设计方式,可裁减、可扩充、可升级,并具备一定的系统可编程功能。将SOPC技术引入系统设计中,将会使设计功耗更低,体积更小,性能更加优越,功能更加强大。复杂的小型系统可二、基于EDA工具的FPGA/CPLD开发流程:开发步骤:1、 文本/原理图编辑与修改。首先利用EDA工具的文本或图形编辑器将设计者的设计意图用文本(ABEL-HDL程序)或图形方式(原理图或状态图)表达出来。2、 编译。完成设计描述后即可通过编译器进行排错编译,变成特定的文本格式,为下一步的综合做准备。3、 综合。这是将软件设计与硬件的可实现性挂钩,是将软件转化为硬件电路的关键步骤。综合后HDL综合器可生成ENIF、XNF或VHDL等格式的网表文件,他们从门级开始描述了最基本的门电路结构。4、 行为仿真和功能仿真。利用产生的网表文件进行功能仿真,以便了解设计描述与设计意图的一致性。(该步骤可以略去)5、 适配。利用FPGA/CPLD布局布线适配器将综合后的网表文件针对某一具体的目标器件进行逻辑映射操作,其中包括底层器件配置、逻辑分割、逻辑优化、布局布线。该操作完成后,EDA软件将产生针对此项设计的适配报告和JED下载文件等多项结果。适配报告指明了芯片内资源的分配与利用、引脚锁定、设计的布尔方程描述情况。6、 功能仿真和时序仿真。该不妨真实接近真实器件运行的方针,仿真过程已将器件的硬件特性考虑进去了,因此仿真精度要高的多。(该步骤也可略去)7、 下载。如果以上的所有过程都没有发现问题,就可以将适配器产生的下载文件通过FPGA/CPLD下载电缆载入目标芯片FPGA或CPLD中。8、 硬件仿真与测试。第3.3节 FPGA的概念以及发展状况FPGA(FieldProgrammable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。一、背景FPGA作为一种可编程逻辑器件,现场可编程门阵列的出现是可编程逻辑器件发展变化的必 然,它的出现推动着可编程逻辑器件的进一步发展。因此说,了解了可编程逻辑器件的的发 展历程,也就了解了FPGA的发展历程。 可编程逻辑器件(FPGA)是20世纪70年代发展起来的一种新型期间。它的应用不仅简化 了电路设计,降低了成本,提高了系统的可靠性,而且给数字系统的设计方式带来了革命性 的变化。 可编程逻辑器件的发展是以微电子创作技术的不断进步为基础的, 其结构和工艺的 变化经历了一个不断发展变革的过程。 20世纪70年代, 早期的可编程逻辑器件只有可编程只读存储器, 紫外线可擦除制度储存 器和电可擦除只读储存器3种。 随后,出现了一类结构稍微复杂的可编程芯片,即可编程逻辑阵列(PLA)。PLA在结构 上由一个可编程的与阵列和可编程的或阵列构成,阵列规模小,编程过程复杂繁琐。PLA既 有现场可编程的,也有掩膜可编程的。 在这之后出现了可编程阵列逻辑(PAL)器件,它由一个可编程的“与”平面和一个固定 EPROM技术和EEPROM 的“或” 平面构成, 是现场可编程的。 它的实现工艺由反熔丝技术、 技术3种。在PLA的基础上,又发展除了一种通用阵列逻辑(GAL),如GAL16V8、GAL22V10 等。它采用了输出逻辑宏单元结构和EEPROM工艺,实现了电可擦除、电可改写,由于其 输出结构是可编程的逻辑宏单元,因而其设计具有很强的灵活性,至今仍有许多应用。 这些早期的PLD器件的一个共同特点是可以实现速度特性较好的逻辑功能, 但由于其结 构过于简单,因此,只能用于实现较小规模的电路设计 为了弥补这一缺陷,20世纪80年代中期,著名的可编辑逻辑器件厂商Altera和Xilinx分 别推出了扩展型的复杂可编程逻辑器件(CPLD)和类似于标准门阵列的现场可编程门阵列 (FPGA)。CPLD和FPGA的功能基本相同,只是芯片的内部原理和结构有些差别。这两种器 件兼容了PAL和GAL器件的优点,具有体系结构灵活、逻辑资源丰富、集成度高以及适用范 围广等特点,可用于实现较大规模的电路设计,编程也很灵活,所以,被广泛应用于产品的 原型设计和小批量生产之中。几乎所有使用PAL、GAL和中小规模通用数字集成电路的场合 均可应用CPLD和FPGA器件。 如今,FPGA器件已成为当前主流的可编辑逻辑器件之一。经过近20年的发展,可编辑 逻辑器件已经取得了长足的进步, 资源更加丰富, 使用越来越方便。 将来的可编程逻辑器件, 密度会更高、速度会更快、功耗会更低,同时还会增加更多新的功能,向着集成了可编程逻辑、CPU、储存期等组件的可编程单片系统(SOPC)方向发展目前以硬件描述语言(Verilog 或 VHDL)所完成的电路设计,可以经过简 单的综合与布局,快速的烧录至 FPGA 上进行测试,是现代 IC 设计验证的技术主流。这些可编辑元件可以被用来实现一些基本的逻辑门电路(比如AND、OR、XOR、NOT)或者更复杂一些的组合功能比如解码器或数学方程式。在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件例如触发器(Flipflop)或者其他更加完整的记忆块。系统设计师可以根据需要通过可编辑的连接把FPGA内部的逻辑块连接起来,就好像一个电路试验板被放在了一个芯片里。一个出厂后的成品FPGA的逻辑块和连接可以按照设计者而改变,所以FPGA可以完成所需要的逻辑功能。 FPGA一般来说比ASIC(专用集成芯片)的速度要慢,无法完成复杂的设计,而且消耗更多的电能。但是他们也有很多的优点比如可以快速成品,可以被修改来改正程序中的错误和更便宜的造价。厂商也可能会提供便宜的但是编辑能力差的FPGA。因为这些芯片有比较差的可编辑能力,所以这些设计的开发是在普通的FPGA上完成的,然后将设计转移到一个类似于ASIC的芯片上。另外一种方法是用CPLD(复杂可编程逻辑器件备)。 二、CPLD与FPGA的关系早在1980年代中期,FPGA已经在PLD设备中扎根。CPLD和FPGA包括了一些相对大数量的可编辑逻辑单元。CPLD逻辑门的密度在几千到几万个逻辑单元之间,而FPGA通常是在几万到几百万。 CPLD和FPGA的主要区别是他们的系统结构。CPLD是一个有点限制性的结构。这个结构由一个或者多个可编辑的结果之和的逻辑组列和一些相对少量的锁定的寄存器。这样的结果是缺乏编辑灵活性,但是却有可以预计的延迟时间和逻辑单元对连接单元高比率的优点。而FPGA却是有很多的连接单元,这样虽然让它可以更加灵活的编辑,但是结构却复杂的多。 CPLD和FPGA另外一个区别是大多数的FPGA含有高层次的内置模块(比如加法器和乘法器)和内置的记忆体。因此一个有关的重要区别是很多新的FPGA支持完全的或者部分的系统内重新配置。允许他们的设计随着系统升级或者动态重新配置而改变。一些FPGA可以让设备的一部分重新编辑而其他部分继续正常运行。 三、FPGA芯片结构目前主流的FPGA仍是基于查找表技术的,已经远远超出了先前版本的基本性能,并且整合了常用功能(如RAM、时钟管理和DSP)的硬核(ASIC型)模块。FPGA芯片主 要由7部分完成,分别为:可编程输入输出单元、基本可编程逻辑单元、完整的时钟管理、嵌入块式RAM、丰富的布线资源、内嵌的底层功能单元和内嵌专用硬件模块。 四、FPGA芯片的内部结构每个模块的功能如下: 1、可编程输入输出单元(IOB) 可编程输入/输出单元简称I/O单元,是芯片与外界电路的接口部分,完成不同电气特性下对输入/输出信号的驱动与匹配要求,FPGA内的I/O按组分类,每组都能够独立地支持不同的I/O标准。通过软件的灵活配置,可适配不同的电气标准与I/O物理特性,可以调整驱动电流的大小,可以改变上、下拉电阻。目前,I/O口的频率也越来越高,一些高端的FPGA通过DDR寄存器技术可以支持高达2Gbps的数据速率。 外部输入信号可以通过IOB模块的存储单元输入到FPGA的内部,也可以直接输入FPGA 内部。当外部输入信号经过IOB模块的存储单元输入到FPGA内部时,其保持时间(Hold Time)的要求可以降低,通常默认为0。为了便于管理和适应多种电器标准,FPGA的IOB被划分为若干个组(bank),每个bank的接口标准由其接口电压VCCO决定,一个bank只能有 一种VCCO,但不同bank的VCCO可以不同。只有相同电气标准的端口才能连接在一起,VCCO电压相同是接口标准的基本条件。 2、可配置逻辑块(CLB) CLB是FPGA内的基本逻辑单元。CLB的实际数量和特性会依器件的不同而不同,但是每个CLB都包含一个可配置开关矩阵,此矩阵由4或6个输入、一些 选型电路(多路复用器等)和触发器组成。开关矩阵是高度灵活的,可以对其进行配置以便处理组合逻辑、移位寄存器或RAM。在Xilinx公司的FPGA器件中,CLB由多个(一般为4个或2个)相同的Slice和附加逻辑构成,每个CLB模块不仅可以用于实现组合逻辑、时序逻辑,还可以配置为分布式RAM和分布式ROM。 Slice是Xilinx公司定义的基本逻辑单位,其内部结构如图1-4所示,一个Slice由两个4输入的函数、进位逻辑、算术逻辑、存储逻辑和函数复用器组成。算术逻辑包括一个异或门(XORG)和一个专用与门(MULTAND),一个异或门可以使一个Slice实现 2bit全加操作,专用与门用于提高乘法器的效率;进位逻辑由专用进位信号和函数复用器(MUXC)组成,用于实现快速的算术加减法操作;4输入函数发生 器用于实现4输入LUT、分布式RAM或16比特移位寄存器(Virtex-5系列芯片的Slice中的两个输入函数为6输入,可以实现6输入LUT或 64比特移位寄存器);进位逻辑包括两条快速进位链,用于提高CLB模块的处理速度。 3、数字时钟管理模块(DCM) 业内大多数FPGA均提供数字时钟管理(Xilinx的全部FPGA均具有这种特性)。Xilinx推出最先进的FPGA提供数字时钟管理和相位环路锁定。相位环路锁定能够提供精确的时钟综合,且能够降低抖动,并实现过滤功能。 4、嵌入式块RAM(BRAM) 大多数FPGA都具有内嵌的块RAM,这大大拓展了FPGA的应用范围和灵活性。块RAM可被配置为单端口RAM、双端口RAM、内容地址存储器 (CAM)以及FIFO等常用存储结构。RAM、FIFO是比较普及的概念,在此就不冗述。CAM存储器在其内部的每个存储单元中都有一个比较逻辑,写入 CAM中的数据会和内部的每一个数据进行比较,并返回与端口数据相同的所有数据的地址,因而在路由的地址交换器中有广泛的应用。除了块RAM,还可以将 FPGA中的LUT灵活地配置成RAM、ROM和FIFO等结构。在实际应用中,芯片内部块RAM的数量也是选择芯片的一个重要因素。 单片块RAM的容量为18k比特,即位宽为18比特、深度为1024,可以根据需要改变其位宽和深度,但要满足两个原则:首先,修改后的容量(位宽 深度)不能大于18k比特;其次,位宽最大不能超过36比特。当然,可以将多片块RAM级联起来形成更大的RAM,此时只受限于芯片内块RAM的数量,而 不再受上面两条原则约束。 5、丰富的布线资源 布线资源连通FPGA内部的所有单元,而连线的长度和工艺决定着信号在连线上的驱动能力和传输速度。FPGA芯片内部有着丰富的布线资源,根据工艺、长度、宽度和分布位置的不同而划分为4类不同的类别。第一类是全局布线资源,用于芯片内部全局时钟和全局复位/置位的布线;第二类是长线资源,用以完成芯片 Bank间的高速信号和第二全局时钟信号的布线;第三类是短线资源,用于完成基本逻辑单元之间的逻辑互连和布线;第四类是分布式的布线资源,用于专有时钟、复位等控制信号线.在实际中设计者不需要直接选择布线资源,布局布线器可自动地根据输入逻辑网表的拓扑结构和约束条件选择布线资源来连通各个模块单元。从本质上讲,布线资源的使用方法和设计的结果有密切、直接的关系。 6 底层内嵌功能单元 内嵌功能模块主要指DLL(Delay Locked Loop)、PLL(Phase Locked Loop)、DSP和CPU等软处理核(SoftCore)。现在越来越丰富的内嵌功能单元,使得单片FPGA成为了系统级的设计工具,使其具备了软硬件联合设计的能力,逐步向SOC平台过渡。DLL和PLL具有类似的功能,可以完成时钟高精度、低抖动的倍频和分频,以及占空比调整和移相等功能。Xilinx公司生产的芯片上集成了 DLL,Altera公司的芯片集成了PLL,Lattice公司的新型芯片上同时集成了PLL和DLL。PLL 和DLL可以通过IP核生成的工具方便地进行管理和配置。 7. 内嵌专用硬核 内嵌专用硬核是相对底层嵌入的软核而言的,指FPGA处理能力强大的硬核(Hard Core),等效于ASIC电路。为了提高FPGA性能,芯片生产商在芯片内部集成了一些专用的硬核。例如:为了提高FPGA的乘法速度,主流的FPGA 中都集成了专用乘法器;为了适用通信总线与接口标准,很多高端的FPGA内部都集成了串并收发器(SERDES),可以达到数十Gbps的收发速度。 Xilinx公司的高端产品不仅集成了Power PC系列CPU,还内嵌了DSP Core模块,其相应的系统级设计工具是EDK和Platform Studio,并依此提出了片上系统(System on Chip)的概念。通过PowerPC、Miroblaze、Picoblaze等平台,能够开发标准的DSP处理器及其相关应用,达到SOC的开发目 的。 五、基本特点1)采用FPGA设计ASIC电路(专用集成电路),用户不需要投片生产,就能得到合用的芯片。 2)FPGA可做其它全定制或半定制ASIC电路的中试样片。 3)FPGA内部有丰富的触发器和I/O引脚。 4)FPGA是ASIC电路中设计周期最短、开发费用最低、风险最小的器件之一。 5) FPGA采用高速CMOS工艺,功耗低,可以与CMOS、TTL电平兼容。 可以说,FPGA芯片是小批量系统提高系统集成度、可靠性的最佳选择之一。 FPGA是由存放在片内RAM中的程序来设置其工作状态的,因此,工作时需要对片内的RAM进行编程。用户可以根据不同的配置模式,采用不同的编程方式。 加电时,FPGA芯片将EPROM中数据读入片内编程RAM中,配置完成后,FP

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论