




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第九单元第一课时老虎头小学“生本健康”课堂教学设计课题名称数学广角集合科目数学教学对象三年级授课教师罗中民课时第 1课时课 型新授课 教学内容教材第104页例1及105做一做第1题和练习二十三第1题教材分析“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。学情分析本单元教材第一次安排了简单的集合思想的教学。集合思想是数学中最基本的思想,虽然学生在计数和计算的学习中,已经接触过集合思想,但学生在低年级接触的集合思想更多是一一对应的思想,对于两个集合间的运算,尤其是交集的体会并不多。学生在早期学习数学时就已经开始运用集合的思想方法。如:分类的思想与方法,再如:一年级时接触过这样题:“有一列小朋友,从前数明明排第5,从后数明明排第3,这一列有几人?”对于“重复的人数要减去”,学生是有经验的,能够列式解答。集合数学思想方法不仅有着广泛的应用,而且是今后进一步学习数学的基础。这一数学思想的引入为培养学生的逻辑思维能力提供了良好的素材。在今后的学习经常运用到维恩图表示关系,如:三角形的分类、各种四边形关系等。都是让学生在体会运用上解决实际问题,为今后学习奠定基础。教学目标1、适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。2、借助直观图理解集合图中每一部分的含义,通过语言的描述和计算的方法,能解决简单的重复问题。3、通过观察、操作、实验、交流、猜测等活动,让学生在合作学习中感知集合图形成过程,体会集合图的优点,能直观看出重复部分,解决生活中的问题。4、体验个体与小组合作探究相结合的学习过程,养成勤动脑,乐思考、巧运用的学习习惯,同时在这个过程中感受数学与生活的密切联系,体会数学的价值。教学重点了解集合图的产生过程,利用集合的思想方法解决有重复部分的问题。教学难点理解集合图的意义,会解决简单重复问题。教学准备多媒体课件教学步骤一、激趣导入,揭示课题预学活动(5)分钟一、诊断性评价 数学广角集合诊断性评价 小棒拼三角形(1)3根小棒拼成的一个三角形。(2)提出问题:摆2个这样的三角形需要几根小棒?预设:可能会说6根,表示3+3=6(根)还可能会说5根,表示3+3-1=5(根)图片出示有重复情况的2个三角形。教师追问:根据图中摆的方法,哪种列式是正确的?为啥要减1?2、思考与发现(课件出示)把2组有重复情况的图片放在一起。(1)提问:你发现了什么?学生思考,回答想法。教师要引导学生突出:(1)“重叠”或“重复”一词;(2)列式中“减1”的意义;(3)能用表达逻辑关系的语言“既又”和“或”说出这两个关于重复现象的问题;(4)师生小结,得出:三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。二、导入新课教师揭示课题,今天我们研究有重复现象的数学问题。1、情境引入(课件出示“通知”)(1)了解信息,提出问题你认为三(1)班要选拔多少名同学参加这两项比赛?让学生尝试回答参加比赛的总人数。(2)出示名单,引发认知冲突课件出示三(1)班参赛学生的名单的统计表,让学生观察。2、观察名单,验证人数,初悟“重复”问题:仔细观察过这份报名表,你有什么发现?让学生根据自己的理解分析,发现有参加两个项目的同学,从而得出“重复”或相近的意思。设计一组简单实例,既有生活中的问题又有数学中的重叠问题,不同角度的对比,共同的理解方法,都从简单数据入手,让学生在计算总数时都不能用直接相加的方法求出总数,引发学生认知冲突,唤醒探究热情,也让学生初识重复问题的基本含义。二、共学活动(20)分钟1、策略分析谈话:你能从这份报名表中一眼就看出有几位同学参加两项比赛?让学生意识到如果能直观看出重复的同学就不会计算错误的问题,激发学生想重新整理名单的欲望。借助学具,小组合作,同学间相互交流。教师巡视,个别辅导。2、探究方法(1)选出几种不同作品展示,理解分析不同整理方法。预设:方法一方法二:跳绳 即参加跳绳又参加踢毽子 踢毽子陈东 丁旭 杨明 于丽 陶伟王爱华 赵军 刘红 周晓 卢强马超 徐强 李芳 朱晓东(2)交流不同思想,比较各自的优缺点。(3)引入韦恩图(集合图),了解集合图中的各标题含义,进行填写。课件出示:(4)介绍韦恩,拓宽视野课件出示:在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为韦恩图(也叫文氏图),是由英国数学家叫韦恩发明创造的,韦恩图常用来研究表示数学中的“集合问题”,也叫集合图。3、辩论感悟谈话:现在用维恩图来表示各项参赛的人数,与之前的表格比较,它有哪些优点?让学生感悟集合图能直观看出参加各项运动的人数,尤其是重复参加两项比赛人数的部分很清楚。4、据图列式,运用集合图谈话:你了解图中各部分的意义吗?(1)课件演示各部分,让学生比较正确表述各部分的意义。(2)利用数据,列式计算出该班参加比赛的人数。指名学生计算,反馈交流,理解各算式的意义。可能会出现:8+9-3=14(人);6+3+5=14(人);8-3+9=14(人)9+5=14(人)5、变式练习,内化集合思想课件出示:三(2)参加运动会学生名单(学号表示),根据信息填写集合图中。跳绳91317182529333842踢毽子1725283031394044教师在引导中要让学生意识到先填写哪部分,再填写哪部分会更好些。请学生板演,汇报填写的策略,看图理解各部分的意义,计算三(2)班参加比赛的总人数。 通过分析,让学生认识到要解决重叠问题,就要清楚看出重复部分的数量,从而引发学生操作意识,这时教师放手让学生进行探究,整理,在小组合作中完成。让学生借助直观图,理解集合图的意义,并利用集合的思想方法解决简单的实际问题。在不同的策略中感受到解决问题方法的多样性,提高学生思维水平和学习能力。三、延学活动(15)分钟一、整理归纳今天我们认识了用集合图来解决有重复现象的数学问题。这是一种数学思想,叫集合思想。(板书:集合)今天我们利用集合数学思想方法解决一些数学问题,希望同学们以后在学习上能多观察、勤思考,探寻更多的数学奥秘。二
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论