



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆、双曲线的焦点三角形问题一、有关面积的问题,方法:面积公式、余弦定理 例1. 如图,F1、F2分别是椭圆C:1(ab0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,F1AF260.(1)求椭圆C的离心率;(2)已知AF1B的面积为40,求a,b的值解(1)由题意可知,AF1F2为等边三角形,a2c,所以e.(2)方法一a24c2,b23c2,直线AB的方程为y(xc),将其代入椭圆方程3x24y212c2,得B,所以|AB|c.由SAF1B|AF1|AB|sinF1ABaca240,解得a10,b5.方法二设|AB|t.因为|AF2|a,所以|BF2|ta.由椭圆定义|BF1|BF2|2a可知,|BF1|3at,再由余弦定理(3at)2a2t22atcos 60可得,ta.由SAF1Baaa240 知,a10,b5.例2如图2,已知双曲线的中心在坐标原点,焦点在x轴上,分别为左、右焦点,双曲线的右支上有一点P,且的面积为,双曲线的离心率为2,求该双曲线的方程.解析:设双曲线的方程为, .在PF1F2中,由余弦定理,得 ,即 ,又因为,所以,所以,所以即,又因为,所以. 故所求双曲线方程为.二、有关的问题,方法: 正弦定理、等比定理 例3已知椭圆的焦点是F1(1,0)、F2(1,0),P为椭圆上一点,且F1F2是PF1和PF2的等差中项(1)求椭圆的方程;(2)若点P在第三象限,且PF1F2120,求tanF1PF2解:(1)由题设2F1F2PF1PF22a,又2c2,b,椭圆的方程为1(2)设F1PF2,则PF2F160,椭圆的离心率则,整理得:5sin(1cos)故,tanF1PF2tan三、有关内切圆的问题,方法:椭圆定义、切线长定理 例4椭圆上一点P,两个焦点, 的内 切圆记为,求证:点P到的切线长为定值.证明:设M与PF1F2的切点为A、B、C,如图1,因M是PF1F2的内切圆,所以|F1A|=|F1C|、|F2C|=|F2B|,|PA|=|PB|; |F1C|F2C|=2c, |F1A|F2B|=2c,由椭圆第一定义知 |PF1|PF2|=2a , |PA|F1A|PB|F2B|=2a, 2|PA|=2a2c 即 |PA|=ac为定值四、有关轨迹的问题,方法: 例5 例6已知椭圆上一动点P,两个焦点, 的内切圆记为M,试求圆心M的轨迹方程.解析: 如图1,设PF1F2=、PF2F1=,M(x,y)则在PF1F2中由正弦定理及椭圆的定义有,由等比定理有即,又由合分比定理知.由斜率公式知:由前述不难看出,不论P位于椭圆上(异于长轴两端点)何处,总有整理得(ac)x2(ac)y2=(ac)c2(y0)证毕点评:由上获得的方程不难看出,PF1F2的内切圆圆心M始终在包含于原椭圆内的一小椭圆上移动如果中出现两个角,可以考虑应用正弦定理.五、开放性问题,方法: 例7、已知为双曲线的两个焦点,为双曲线右支上异于顶点的任意一点,为坐标原点下面四个命题:的内切圆的圆心必在直线上;的内切圆的圆心必在直线上;的内切圆的圆心必在直线上; 的内切圆必通过点其中真命题的代号是 解析:设的内切圆分别与PF1、PF2切于点A、B,与F1F2切于点M,则|PA|PB|,|F1A|F1M|,|F2B|F2M|,又点P在双曲线右支上,所以|PF1|PF2|2a,故|F1M|F2M|2a,而|F1M|F2M|2c,设M点坐标为(x,0),则由|F1M|F2M|2a可得(xc)(cx)2a解得xa,显然内切圆的圆心与点M的连线垂直于x轴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 十类化工考试试题及答案
- 复合函数试题及答案
- 新学员叉车考试试题及答案
- 北京窗帘布料知识培训课件
- 北京社保公积金知识培训课件
- 2025年广丰区农村高中学校教师区内选调工作考试笔试试题(含答案)
- 2025年甘南事业单位招聘考试笔试试题(含答案)
- 2025年中式烹调师高级理论知识试题库及答案
- 2024年山东省“安全生产月”知识考试试题含参考答案
- 《医疗器械质量管理规范》试卷以及答案
- 固定资产编码规则(范文)
- 数字经济学导论-完整全套课件
- MissionPlanner地面站操作使用文档
- 中级采气工操作技能鉴定要素细目表
- 油水气井带压井作业操作规程及工艺技术要求
- (33)-钠钾泵细胞生物学
- 配电室巡检记录表
- GB/T 242-2007金属管扩口试验方法
- 政治理论水平任职资格考试题库
- 路基压实度汇总表
- 【食品生产加工技术】香肠的加工技术
评论
0/150
提交评论