




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
椭圆【学习目标】1. 经历从具体情境中抽象出椭圆模型的过程;2. 掌握椭圆的定义和标准方程;能用椭圆的定义和标准方程解决简单的实际问题;3. 掌握椭圆的对称性、范围、定点、离心率等简单性质;4. 能用椭圆的简单性质求椭圆方程;能用椭圆的简单性质分析解决有关问题.【要点梳理】要点一:椭圆的定义平面内一个动点到两个定点、的距离之和等于常数(),这个动点的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距.要点诠释:若,则动点的轨迹为线段;若,则动点的轨迹无图形.要点二:椭圆的标准方程椭圆的标准方程:1. 当焦点在轴上时,椭圆的标准方程:,其中;2. 当焦点在轴上时,椭圆的标准方程:,其中;要点诠释:1. 这里的“标准”指的是中心在坐标原点,对称轴为坐标轴建立直角坐标系时,才能得到椭圆的标准方程;2. 在椭圆的两种标准方程中,都有和;3. 椭圆的焦点总在长轴上.当焦点在轴上时,椭圆的焦点坐标为,;当焦点在轴上时,椭圆的焦点坐标为,;4. 在两种标准方程中,a2b2,可以根据分母的大小来判定焦点在哪一个坐标轴上.求椭圆的标准方程的主要方法:求椭圆的标准方程主要用到以下几种方法:1. 待定系数法:若能够根据题目中条件确定焦点位置,可先设出标准方程,再由题设确定方程中的参数a,b,即:“先定型,再定量”.由题目中条件不能确定焦点位置,一般需分类讨论;有时也可设其方程的一般式:.2. 定义法:先分析题设条件,判断出动点的轨迹,然后根据椭圆的定义确定方程,即“先定型,再定量”。利用该方法求标准方程时,要注意是否需先建立平面直角坐标系再解题.要点三:椭圆的简单几何性质我们根据椭圆来研究椭圆的简单几何性质椭圆的范围椭圆上所有的点都位于直线x=a和y=b所围成的矩形内,所以椭圆上点的坐标满足|x|a,|y|b.椭圆的对称性对于椭圆标准方程,把x换成x,或把y换成y,或把x、y同时换成x、y,方程都不变,所以椭圆是以x轴、y轴为对称轴的轴对称图形,且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。椭圆的顶点椭圆的对称轴与椭圆的交点称为椭圆的顶点。椭圆(ab0)与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为A1(a,0),A2(a,0),B1(0,b),B2(0,b)。线段A1A2,B1B2分别叫做椭圆的长轴和短轴,|A1A2|=2a,|B1B2|=2b。a和b分别叫做椭圆的长半轴长和短半轴长。椭圆的离心率椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e表示,记作。因为ac0,所以e的取值范围是0e1。e越接近1,则c就越接近a,从而越小,因此椭圆越扁;反之,e越接近于0,c就越接近0,从而b越接近于a,这时椭圆就越接近于圆。当且仅当a=b时,c=0,这时两个焦点重合,图形变为圆,方程为x2+y2=a2。要点诠释:椭圆的图象中线段的几何特征(如下图):(1),;(2),;(3),,;要点四:椭圆标准方程中的三个量a、b、c的几何意义 椭圆标准方程中,a、b、c三个量的大小与坐标系无关,是由椭圆本身的形状大小所确定的,分别表示椭圆的长半轴长、短半轴长和半焦距长,均为正数,且三个量的大小关系为:ab0,ac0,且a2=b2+c2。可借助下图帮助记忆: a、b、c恰构成一个直角三角形的三条边,其中a是斜边,b、c为两条直角边。和a、b、c有关的椭圆问题常与与焦点三角形有关,这样的问题考虑到用椭圆的定义及余弦定理(或勾股定理)、三角形面积公式相结合的方法进行计算与解题,将有关线段、,有关角()结合起来,建立、之间的关系. 要点五:椭圆两个标准方程几何性质的比较标准方程图形性质焦点,焦距范围,对称性关于x轴、y轴和原点对称顶点,轴长轴长=,短轴长= 离心率要点诠释:椭圆,(ab0)的相同点为形状、大小都相同,参数间的关系都有ab0和,a2=b2+c2;不同点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广西供销投资集团有限公司招聘3人考试备考试题及答案解析
- 2025东营市东凯中学招聘劳务派遣教师(25人)笔试备考试题及答案解析
- 海上平台消防安全措施
- 2025昌吉国家农业高新技术产业示范区消防救援大队招聘编制外政府专职消防员(11人)笔试备考题库及答案解析
- 2025广东深圳市光明区消费者委员会办公室招聘一般类岗位专干4人笔试备考试题及答案解析
- 公共设施设计进度计划和保证设计进度的措施
- 2025 北京首航科学技术开发有限公司天津分公司招聘2人笔试备考试题及答案解析
- 2025年全科中药科学科慢性支气管炎中药处方调配评估答案及解析
- 2025年内科疾病诊断与治疗技术综合性考试答案及解析
- 2025年北京小院租赁协议书
- 中山酒店行业状况分析
- 船员劳动合同
- 南城一中高三年级工作计划
- 企业重组改变组织结构以提高效率
- 植保无人机应急处置预案
- 湖北十堰生产实习报告
- 《中国古代的服饰》课件
- 行业标准项目建议书
- 新人教版高中数学选择性必修第一册全套精品课件
- 夏米尔350Pedm火花机快速入门操作
- 人教新版高中物理必修说课实验练习使用多用电表
评论
0/150
提交评论