子母双筒洗衣机结构设计含19张CAD图.zip
收藏
资源目录
压缩包内文档预览:
编号:42894838
类型:共享资源
大小:6.64MB
格式:ZIP
上传时间:2020-01-20
上传人:QQ14****9609
认证信息
个人认证
郭**(实名认证)
陕西
IP属地:陕西
200
积分
- 关 键 词:
-
子母
双筒
洗衣机
结构设计
19
CAD
- 资源描述:
-
子母双筒洗衣机结构设计含19张CAD图.zip,子母,双筒,洗衣机,结构设计,19,CAD
- 内容简介:
-
(12)美美 国国 专专 利利 Petronilho et al. (54)用于确定衣物洗涤机中用于确定衣物洗涤机中的负载的方法的负载的方法 (76)发明人:Andre Petronilho, Sao Carlos (BR); Marcelo Andrade Dias, Rio Claro (BR) (*)注 意:根据任何免责声明,本专利的期限根据 35 U.S.C.延长或调整.154(b) 59天。 (21)App1.No .: 12 / 964,328 (22)提交日期:2010 年年 12 月月 9 日日 (65) 以前的出版物数据以前的出版物数据 US 2011 / 0202303A1 2011 年 8 月 18 日 (30) 外国应用优先级数据外国应用优先级数据 200912.19(BR).0905317 (51)Int.Cl. G01P 15/00(2006.01) G01P 3/00(2006.01) G01P 11/00(2006.01) D06F 33/00(2006.01) D06F 33/02(2006.01) (52)US.Cl. USPC . . 702/145; 702/141; 702/146; 68/1202; 68 / 12.04 (58)分类领域搜索分类领域搜索 USPC . 702/33,34,142,145,146; 68/1201,68/1202,12.04,12.06,12.16 查看申请表完整的搜索历史。 (56) 参考文献参考文献 美国专利文献 5,241,845 A 9/1993 Ishibashi et 31. 6,038,724 A 3/2000 Chbat et a1. 6,505,369B1*l/2003 Weinmann . 8/159 7,162,759 B2 *l/2007 Weinmann8/158 7,296,445B2* 11/2007Zhang et a1.68/12.06 7,739,764 B2 * 6/2010 Zhang et a18/159 8,186,227B2*5/2012 Ashrafzadeh .73/760 (10)专利号专利号: US 8,489,358 B2 (45)专利日期:专利日期: 2013 年年 7 月月 16 日日 *审查员引用 初级考官- Michael Nghiem 助理考官- Ricky Ngon (74) 律师,代理或公司Brian Colandreo; Jeffrey T. Placker; Holland & Knight LLP 摘摘 要要 本发明涉及一种用于确定衣物洗涤机中的负载的方法,其包括以下步骤: (E1)加速洗衣机的移动组件,直到移动组件达到低旋转速度; (E2)所述移动组件的加速,直到所述移动组件达到比所述第一步骤(E1)中的速度更快的中等旋转速度;(E3)减速; (E4)移动组件的加速度和发动机电流的测量;(E5)测量,由此测量关于发动机的参数;(E6)关闭发动机和测量减速时间;(E7)重复,其中在执行第八步骤 (E8) 之前, 将第四步 (E4) ,第五步(E5)和第六步(E6)重复至少一次;(E8)计算在第四、第五、第六和第七步骤中测量的每个参数的平均值;和(E9)衣物负荷值的获得 用于确定衣物洗涤用于确定衣物洗涤机中的负载的方法机中的负载的方法 技术领域 本发明涉及一种用于确定衣物洗涤机中的负载的方法,其基于所述洗衣机的电子引擎的操作参数来确定衣物负载。 背景技术 在现有技术中经常发现用于测量或估计衣物洗涤机中的负载的方法。这些方法是至关重要的,因为通过测量衣物负载,可以更精确地编程用于洗衣机的操作的洗涤时间和水量。因此,还可以节省水和电能,这是许多技术发展中常见和共同关注的问题,而不仅仅是属于本发明相同领域的问题。除了从经济视点引入优点之外,现有技术的负载测量的方法已经与控制系统一起使用,以使洗衣机的操作自动化,给用户带来实际优点。 作为洗衣机的负载测量方法的现有技术的示例,可以引用美国专利Pat.No.5,241,845。该文献描述了一种根据发动机电流相位和其电压相位之间的相位角的差的测量来估计洗衣机中的衣物负载的方法。因此,该文献保持相位角的差的减小与发动机的效能成比例。因此,考虑到发动机效率与待洗涤的衣物的体积成比例,相位角的改变与洗衣机的筐中的衣物量相关联。 超过该测量特性,该美国文献中描述的方法使用其他变量来自动配合洗衣机的操作,诸如:衣服类型,洗涤剂体积,洗涤剂类型,水的透明度和水的温度。存在与这些变量中的每一个相关联的至少一个传感器和至少一个电路。因此,该方法通过神经网络组合这些变量,以实现控制洗衣机的洗涤操作的目的。 正如你可以看到的,该专利中描述的方法美国专利Pat.No.5,241,845 考虑了超过衣物负载的许多变量以使洗衣机的操作自动化。虽然这些其他变量给消费者带来了好处,但是这种方法的实现成本很高,考虑到测量和处理变量所必需的组件数量。 现有技术的另一示例包含在专利文献美国专利号 6,038,724。 该文献描述了一种根据位置和速度的变量估计洗衣机中的衣物负载的方法。更具体地,该方法基于移动组件(在这种情 况下为搅拌器)的加速度和发动机相位角来计算衣物负载的转动惯量。 贯穿文件 US 的文本。据说所描述的方法需要简单的传感器系统和用于其可行性的控制器。然而,尽管该方法能够通过低成本组件来实现,但是应当注意,力矩的计算本惯例提出的惯性不考虑移动装置内的载荷分布影响该数量所采用的值。除此之外,还没有考虑其他因素可影响可移动组件的加速度(例如发动机的温度)的事实。因此,不考虑惯性力矩的这些特性的负载估计是不精确的,因此,需要改进以便由本领域技术人员完全采用成功。 在这种意义上,应当注意,现有技术仍然不包括用于估计效率高的衣物负荷的方法,并且同时具有低的实施成本。实施的目的因此,提供一种在洗衣机中测量衣物负荷的方法,该方法效率高,可靠且耐用,同时成本低是本发明的目的。 发明内容 本发明的目的通过一种在洗衣机中的负载测量的方法来实现,该方法包括以下步骤:加速洗衣机的移动组件,直到移动组件达到低的旋转速度;加速所述移动组件,直到所述移动组件达到比所述第一步骤的速度更快的中等旋转速度;关闭所述发动机,从而使所述移动组件转动的发动机关闭;加速度,直到其达到低速,由此使可移动组件转动的发动机的速度增加到预定的转速极限;测量,由此测量相对于发动机的参数;加速度,直到其达到中速,由此测量发动机电流;切断所述发动机并测量所述减速时间,由此测量所述发动机关闭并通过惯性转动并且从达到所述预定最小速度限度所花费的时间;重复,由此,下面的步骤被重复至少一次:加速可移动组件,直到其达到低的旋转速度;测量,移动组件的加速度,直到其达到发动机的中速和关闭,并测量减速时间,计算在前一步骤中测量的每个参数的平均值;以及基于在前一步骤中获得的值获得衣物负荷值。 附图说明 附图如下: FIG.1.-图 2 示出了本发明的方法的第一优选实施例; FIG.2.-图 2 是示出本发明的方法 的第二优选实施例的图; FIG.3.-可以实施本发明的方法的洗衣机的类型; FIG.4.-是具有垂直轴的洗衣机的剖视图; FIG.5.-其表示在本发明的方法的第五和第六步骤中关于时间的转速方面的发动机的行为; FIG.6.-图 6 是在本发明的实施例之一中使用的神经网络的基本架构的图。 具体实施方式 从图中可以看出,在图 3 中,示出了可以应用本发明的洗衣机的类型。优选但非排他地,本发明的方法应用于具有垂直轴 6 的洗衣机,以及具有搅拌器 2 或叶轮 3 的洗衣机。 在这方面,为了支持本发明的方法的描述发明内容,基于图 1 简要描述传统的洗衣机。可从本发明的用于确定负载的方法中获益的常规洗衣机基本上包括移动组件,发动机 5,用于发动机的动力源和控制模块。 为了本发明的目的,移动组件可以由篮子 1 和在具有竖直轴线 6 的机器上由位于罐4内的搅拌器2或叶轮3组成。篮子是洗衣机的部件,其中衣服被安排为洗涤的实现。除此之外,筐可以与电动机 5 相关联,以便角度地移动,以便离开内部的衣物,并且因此通过存在于其侧壁上的孔从衣物去除过量的水,这加速了干燥过程。水箱,其部分是储存器,在其中添加与洗涤衣物相关的水,洗涤剂和其他产品。除此之外,搅拌器通常是精密的,并且叶轮具有带有突出部的板的形式,其中,两个突出部都从篮状物 1的底部沿向上方向突出,也可以与电动机发动机 5, 以便角度地移动并促进篮内部的衣物之间的摩擦。 因此,在这方面,应当理解,在本发明的整个描述中使用的术语“移动组件”是指衣服洗涤机的部件,其移动并且可以取决于洗衣机的型号,篮和搅拌器 2 或叶轮 3。 在其部分上,在电动发动机的情况下, 发动机 5 负责移动可移动组件。在本发明的上下文中,电动发动机 5是传统的洗衣机发动机。发动机的动力源优选地是电能网络,然而,其可以由不是电能网络并且满足发动机规格的其它动力装置包括。另一方面,发动机控制模块包括基于洗衣机的洗涤功能来控制发动机的启动,操作和停止的控制电路。除此之外,控制模块包括用于存储用于执行过程和功能的变量和参数的装置,所述过程和功 能涉及例如调节篮中存在的水量,或甚至每个操作所需的时间那洗衣机。在本发明的情况下,附加地,控制模块用于所提供的步骤的控制和执行,其包括超过操作本身的控制,计算的执行,参数的获取和提供退出,即,存在于洗衣机中的衣物负载的可用性。 传统的洗衣机还可包括将发动机旋转 5 传递到移动组件的装置,这些装置通常包括带。 由于本发明已经在上下文中,因此将基于附图解释其优选实施例。最初,考虑到用户将给定量的衣物添加到洗衣机的筐内部并选择洗衣机的洗涤选项中的一个,则通过致动控制模块来激活本发明的方法,在开始实际洗涤衣服之前。同样地,考虑到由于仅稍微湿润或仅被水轻微覆盖,一些小的衣服可能从篮筐中流出,本发明的方法在第一步骤 E1 中提供恒定的水增加在衣服上。因此,第一步骤 E1 包括可移动组件从暂停开始的加速度,直到其达到低的旋转速度,优选地在25 和 50rpm 之间,随着移动组件正在加速,给定量的水,大约 2 升,倒在衣服上。 因此,避免了最终从篮筐中出来的任何小件衣物。尽管引用了优选的转速值和水的体积,但应当认识到,这些值可以根据所使用的发动机的类型或者根据其他项目变量而变化。 在避免这个问题之后,本发明的方法继续进行到第二步骤 E2,在该步骤 E2 中,移动组件再次加速,然而此时,直到中等旋转速度,优选在 150和 200rpm,该中等速度比第一步骤 E1的速度快。将可移动组件旋转到这种中速的目的是将衣物分散在篮子周围,以便改善负载的分布,并因此最小化该负载的惯性矩处的变化。负载惯性矩的变化损害了在本发明中使用的参数的精确测量,因为负载的转动惯量影响发动机的旋转和 ,例如,大的惯性矩导致较慢的加速度。 由于负载被适当地浸没在水中并以更均匀的方式分布,所以关闭转动移动组件的发动机,使得移动组件减速直到停止。该减速对应于本发明的方法的第三步骤 E3。 在本发明的方法的第四步骤 E4 中,移动组件再次被加速到低的旋转速度,优选地在 25 和 50rpm 之间,这样做使得移动组件离开静止状态并忽略静摩擦,可能在测量中产生更多的噪声。除此之外,为了将本发明的方法应用于其中机构和发动机的轴线之间的耦合由致动器实现的机器,移动组件的加速的步骤 E4 直到达到低速度可以被 消除。在移动组件上施加低速的目的是验证机构是否正确接合。图。图 2示出了本发明的第二优选实施例。在该方法的第五步骤 E5 中,测量与发动机相关的参数。该测量在移动组件的加速度 E4 期间以低速发生,这里描述为单独的步骤,目的是解释本发明的功能。在不使用移动组件的加速步骤E4 到低速的本发明的实施例中,在发动机停止的情况下进行测量,其在发动机关闭步骤 E3 之后发生。 如可以看到的,本发明不直接在衣物负载的惯性矩的情况下执行测量或计算,并且其实际上测量发动机所消耗的能量的量,以加速移动组件,使内部的负载通过以恒定的采样速率测量发动机电流并求和该电流,同时发动机加速可移动组件直到其达到期望速度,获得能量。 在该步骤中,由存在于机器中的传感器测量的参数是:线电压,发动机温度和发动机控制模块温度。在下面的步骤中,将测量可移动组件的发动机电流和减速时间,以构成对衣物负载的测量所必需的输入变量。 在测量了参数之后,在本发明的第六步骤 E6 中再次加速移动组件,直到达到中速。在该步骤中,使可移动组件转动的发动机的速度增加到预定的转速限制,优选地大约为 170rpm,但是根据应用的需要可以使用其它速度。 更确切地说,在第六步骤 E6 中,发动机从低转速加速,如图 6 所示。该低速的优先值为 35rpm。因此,通过施加可变发动机供给电压,机器的控制模块尝试保持恒定的加速率。因此,与机器中的小负载的情况相比,机器的筐中的负载越大,具有相同的加速率所需的能量越多,这使得发动机的电流与筐中的负载量成比例。控制模块维持所述电压源的施加,直到发动机达到预定的转速, 这优选为 165rpm。当达到该值时,本发明的方法进行到第七步骤 E7。. 即使在该加速阶段 E6 期间,也测量发动机电流。优选地,发动机电流在 55 和 155rpm 之间测量,如图 5 所示。然而,根据应用的需要和限制,可以采用其它值,考虑到更高的速度有助于负载的区分,但放大了将小的衣物从外部穿过的问题机器。 在达到最大转速值之后,如已经提到的,本发明的方法进行到第七步骤 E7。在该第七步骤 E7 中,使得移动组件转动的发动机被关闭,从而导致移动组件由于惯性而转动。从关闭发动机的时刻起,测量减速时间,即移 动组件达到预定最小速度限制所花费的时间。该时间间隔也是用于确定筐中的衣物负载的参数。 重要的是注意,当第七步骤 E7 的转速达到预定的最大速度限制(第六步骤 E6 的结束)时,第七步骤 E7 中的发动机的关闭不一定发生。在达到最大极限的情况和发动机关闭的情况之间可能存在时间间隔,使得移动组件的速度可以稳定。在图 1 中示出的优选情况。图 5 示出了直到发动机关闭为止的所述时间间隔。应当理解,该特性不是限制本发明的范围的因素。 在获得该参数之后,本发明的方法继续到第八步骤 E8,其是在执行下面的步骤之前至少一次重复第四 E4,第五 E5,第六 E6 和第七 E7 步骤。这些重复的目的是为每个参数形成数据的选择,因此,可以从这些参数中的每一个的平均值的计算中获得用于确定负载的可靠值。 在这方面,所述重复可以不止一次地发生,这取决于对精度的需要或其它因素,这使得有必要从更大量的样本组成平均值。因此,第九步骤 E9仅包括计算通过执行前面的步骤测量的每个参数的平均值,包括重复这些步骤的时间。 因此,获得了线路电压,控制模块温度,发动机温度,发动机电流的和和发动机达到最小转速值所花费的时间的平均值。 最后, 作为最后一步,本发明的方法使用在前一步骤期间计算的平均值来测量洗衣机中的衣物负荷。对于该第十步骤 E10,本发明提供至少两个可能的实施例。在优选的第一实施例中,负载根据以下经验方程的应用来确定: Load=a vn1n+b Tmn1n+c Tcn1n+d Cn1n+e Tdn1n 其中,VILine 电压,Tm 发动机温度,Tc:控制模块温度,Ci 发动机电流,Td:减速时间(发动机在关闭之后停止的时间) ,n 第七步的重复次数和 a,b,c,d ,e 是通过对所进行的测试的分析而凭经验获得的常数。更精确地,参数 a,b,c,d,e 是通过统计方法“实验设计(D.O.E.) ” 指定的测试获得的重量。在第二实施例中,通过使用神经网络中的平均值来确定负载(图 6) 。本发明中使用的神经网络具有输入层,该输入层包括在前面的步骤中测量的以下参数:线路电压,发动机温度,发动机控制模块温度,发动机电流和减速时间的和。除此之外,所述神经网络包括至少一个隐层和一个输出神经元。调整 权重和线性系数,对网络进行一组训练数据,该训练数据通过在几个衣服洗涤机中执行所描述的算法而获得,并且在每个机器中多次。 因此,通过本发明的方法确定的负载可以应用于洗衣机的控制系统以调节水位。 因此,如您所见,本发明的方法简单且成本低,因此实现了其提出的目的。 最后,重要的是注意,这里用来说明步骤顺序的序数的命名法可以根据本发明的实施例而变化。 例如,在本发明的实施例的情况下,其不包括加速移动组件 E4 的步骤,以下步骤将由顺序一致的数字指定。在这方面,不应当理解,该指定是限制本发明的范围的因素,因为它仅被用于便于描述用于确定负载的方法的特性。 通过已经描述的优选实施例的示例,应当理解,本发明的范围覆盖其它可能的变化,其仅由所附权利要求的措辞限定,其中包括可能的等同物。 本发明要求保护的是: 1一种用于确定衣物洗涤机中的负载的方法,其特征在于包括以下步骤: (E1)加速洗衣机的移动组件,直到移动组件达到预定转速 (E2)移动组件的加速,直到移动组件达到比第一步骤(E1)中的旋转速度快的旋转速度; (E3)切断发动机,由此使移动组件转动的发动机关闭; (E4)可移动组件的加速度,直到其达到预定转速,由此使可移动组件转动的发动机的转速增加到预定转速极限; (E5)测量,其中测量关于发动机的参数; (E6)可移动组件的加速,直到其达到比第四步骤(E4)中的旋转速度更快的旋转速度,由此测量发动机电流; (E7)发动机的关闭和减速时间的测量,其中所述发动机关闭并且通过惯性转动,随着从关闭下降到达到预定的最小转速极限所花费的时间被测量; (E8)重复,由此重复至少一次以下步骤:移动组件的加速,直到其达到预定旋转速度,由此使可移动组件转动的发动机的旋转速度增加到预定速度, 确定的转速极限 (E4) ;测量,由此测量关于发动机的参数 (E5) ; 加速度,直到其达到比第四步骤(E4)中的旋转速度更快的旋转速度,由此 测量发动机电流(E6); 以及测量所述发动机和所述减速时间的测量,其中所述发动机关闭并且通过惯性转动,随着从所述关闭到达到预定的最小转速极限所花费的时间被测量(E7); (E9)计算在前一步骤(E8)中测量的每个参数的平均值; 和 (E10)基于在前一步骤(E9)中获得的值获得衣物负荷的值,其中衣物负荷的值通过等式 Load=a vn1n+b Tmn1n+c Tcn1n+d Cn1n+e Tdn1n 其中,VILine 电压,Tm 发动机温度,Tc:控制模块温度,Ci 发动机电流,Td:减速时间(发动机在关闭之后停止的时间) ,n 第七步的重复次数和 a,b,c,d ,e 是通过对所进行的测试的分析而凭经验获得的常数;或通过使用具有输入层的神经网络中的平均值,所述输入层包括在先前步骤中测量的以下参数:线电压,发动机温度,发动机控制模块温度,发动机电流和减速时间的总和。 2.根据权利要求 1 所述的用于确定衣物洗涤机中的负载的方法,其特征在于,在第一步骤(E1)中,给定量的水被释放到衣物上。 3.根据权利要求 1 所述的衣服中的负载测量方法,其特征在于,在第五步骤(E5)期间,使所述移动组件转动的发动机的速度通过所述应用增加到预定的转速极限的可变电压电源提供给发动机。 4.根据权利要求 1 所述的用于确定衣物洗涤机中的负载的方法,其特征在于,在所述第五步骤(E5)中测量的参数是在所述发动机以预定转速下测量的。 5.根据权利要求 1 所述的用于确定衣物洗涤机中的负载的方法,其特征在于,与在第五步骤(E5)中测量的发动机相关的参数是:线路电压,发动机温度和发动机控制模块温度。 6.一种用于确定衣物洗涤机中的负载的方法,其特征在于包括以下步骤: (E1)洗衣机的移动组件的加速度,直到移动组件达到预定转速 (E2) ,移动组件的加速度直到移动组件达到比第一步骤中的速度更快的转速 E1); (E3)切断发动机,由此使移动组件转动的发动机关闭; (E5)测量,其中测量关于发动机的参数; (E6)可移动组件的加速度,直到其达到比第一步骤(E1)中的旋转速度更快的旋转速度,由此测量发动机电流; (E7)发动机的关闭和减速时间的测量,其中所述发动机关闭并且通过惯性转动。随着从关闭下降到达到预定最小转速极限所花费的时间被测量, ( E8)重复,由此至少重复一次以下步骤:测量,由此测量发动机的参数(E5);加速度,直到其达到比第一步骤(E1)中的旋转速度更快的旋转速度,由此测量发动机电流(E6);和所述发动机的关闭和所述减速时间的测量,其中所述发动机关闭并且通过惯性转动,随着从所述关闭到达到预定的最小转速极限所花费的时间被测量(E7); (E9)计算在前一步骤(E8)中测量的每个参数的平均值;和 (E10)基于在前一步骤(E9)中获得的值获得衣物负荷的值,其中衣物负荷的值通过等式 Load=a vn1n+b Tmn1n+c Tcn1n+d Cn1n+e Tdn1n 其中, VILine 电压, Tm 输入温度,Tc:控制模块温度,C4 发电机电流,Td:减速时间(发动机在关闭后停止的时间) , n: 第七步骤的重复次数, a,b,c,d,e 是通过对所进行的试验进行分析而凭经验获得的常数;或通过使用具有输入层的神经网络中的平均值,所述输入层包括在先前步骤中测量的以下参数: 线电压, 发动机温度,发动机控制模块温度,发动机电流和减速时间的总和。 7.根据权利要求 6 所述的用于确定衣物洗涤机中的负载的方法,其特征在于,在第一步骤(E1)中,给定量的水被释放到衣服上。 8.根据权利要求 6 所述的衣服中的负载测量方法,其特征在于,在第五步骤(E5)期间,使所述移动组件转动的发动机的速度通过所述应用增加到预定的转速极限的可变电压电源提供给发动机。 9.根据权利要求 6 所述的用于确定衣物洗涤机中的负载的方法,其特征在于,在所述第五步骤(E5)中测量的参数是在所述发动机以预定转速下测量的。 10.根据权利要求 6 所述的用于确定衣物洗涤机中的负载的方法,其特征在于,与在第五步骤(E5)中测量的发动机相关的参数是:线路电压,发动机温度和发动机控制模块温度。 XXXMETHOD FOR DETERMINING LOADS IN CLOTHES WASHING MACHINES用于确定衣物洗涤机中的负载的方法资料来源:Andre Petronilho. Marcelo Andrade Dias.论文题目: XXXXXXX 学生姓名: XXXXXXX 学院名称: XXXXXXXXXXXX 专业名称: XXXXXXXXXXXX 班级名称: XXXXXXXX 学 号: XXXXXXXXXXXX 指导教师: XXXXXXXXX 教师职称: XXXXXXXXX 完成时间: 20XX.3.10-20XX.3.17 20XX年 3月 17日Seediscussions,stats,andauthorprofilesforthispublicationat:/publication/302650660MethodfordeterminingloadsinclotheswashingmachinesPatentJuly2013CITATIONS0READS52authors,including:MarceloAndradeDiasIngersollRand,UnitedStates,Minnesota1PUBLICATION0CITATIONSSEEPROFILEAllcontentfollowingthispagewasuploadedbyMarceloAndradeDiason12January2017.Theuserhasrequestedenhancementofthedownloadedfile.(12) United States Patent Petronilho et al. US008489358B2 US 8,489,358 B2 Jul. 16, 2013 (10) Patent N0.: (45) Date of Patent: (54) METHOD FOR DETERMINING LOADS IN CLOTHES WASHING MACHINES (76) Inventors: Andre Petronilho, Sao Carlos (BR); Marcelo Andrade Dias, Rio Claro (BR) ( * ) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 59 days. (21) App1.No.: 12/964,328 (22) Filed: Dec. 9, 2010 (65) Prior Publication Data US 2011/0202303 A1 Aug. 18, 2011 (30) Foreign Application Priority Data Dec. 9, 2009 (BR) . 0905317 (51) Int. Cl. G01P 15/00 (2006.01) G01P 3/00 (2006.01) G01P 11/00 (2006.01) D06F 33/00 (2006.01) D06F 33/02 (2006.01) (52) US. Cl. USPC . 702/145; 702/141; 702/146; 68/1202; 68/ 12.04 (58) Field of Classi?cation Search USPC . 702/33, 34, 142, 145, 146; 68/1201, 68/1202, 12.04, 12.06, 12.16 See application ?le for complete search history. (56) References Cited U.S. PATENT DOCUMENTS 5,241,845 A 9/1993 Ishibashi et 31. 6,038,724 A 3/2000 Chbat et a1. 6,505,369 B1 * l/2003 Weinmann . 8/159 7,162,759 B2 * l/2007 Weinmann 7,296,445 B2 * 11/2007 Zhang et a1. 7,739,764 B2 * 6/2010 Zhang et a1. 8,186,227 B2 * 5/2012 Ashrafzadeh . 73/760 * cited by examiner Primary Examiner * Michael Nghiem Assistant Examiner * Ricky Ngon (74) Attorney, Agent, or Firm * Brian Colandreo; Jeffrey T. Placker; Holland & Knight LLP (57) ABSTRACT The present invention refers to a method for determining loads in clothes Washing machines Which comprises the fol loWing steps: (E1)Acceleration of the mobile assembly of the Washing machine until the mobile assembly reaches a loW rotation speed; (E2) Acceleration of the mobile assembly until the mobile assembly reaches a medium rotation speed faster than the speed in the ?rst step (El); (E3) Deceleration; (E4) Acceleration of the mobile assembly and measurement of the engine current; (E5) Measurement, Whereby param eters regarding the engine are measured; (E6) Shutdown of the engine and measurement of the deceleration time; (E7) Repetition, Whereby the forth (E4), ?fth (E5) and sixth (E6) steps are repeated at least once before the performance of the eighth step (E8); (E8) Calculation of the average of each one of the parameters measured in the fourth, ?fth, sixth and seventh steps; and (E9) Obtainment of clothes load value. 10 Claims, 5 Drawing Sheets Accelexncion o! the venue eelembly until it rache: e low epeea Aceeieutien of the mobile assembly untu it reaches a medium :peea Shutdown of the engine Acceleration DC the mobile assembly until 11: reaches a low speed Measurement of the parameters relating to the engane Acceleration of the mobile assembly urn-.11 it reaches a medium speed Shutdown ot the engine and measurement at the deceleration time Repetition or steps E4. B5, B5 and s1 Calculation or the average ct the parameters obtained at the repetition etep Obtainment e: the clothes load value based en the values obtained during the R10 eighth step (1) US. Patent Jul. 16, 2013 Sheet 1 015 US 8,489,358 B2 Start Acceleration of the mobile assembly until it reaches a low speed E1 Acceleration of the mobile assembly until it reaches a medium speed k E2 I Shutdown of the engine Acceleration of the mobile assembly until 11: reaches a low speed 54 Measurement of the parameters relating to the engine E5 Acceleration of the mobile assembly until it reaches a medium speed E6 Shutdown of the engine and measurement # of the deceleration time i Repetition of steps E4, E5, E6 and E7 E8 1! Calculation of the average of the parameters obtained at the repetition E9 step FIG. 1 V Obtainment of the clothes load value based on the values obtained during the E10 eighth step US. Patent FIG. 2 Jul. 16, 2013 Sheet 2 of5 US 8,489,358 B2 1 Start ) Acceleration of the mobile assembly until it reaches a low speed Acceleration of the mobile assembly until it reaches a medium speed Shutdown of the engine Measurement of the parameters relating to the engine V Acceleration of the mobile assembly until it reaches a medium speed V Shutdown of the engine and measurement of the deceleration time E7 l Repetition of steps E5, E6 and E7 V Calculation of the average of the parameters obtained at the repetition E9 step Obtainment of the clothes load value based on the values obtained during the E10 eighth step US. Patent Jul. 16, 2013 Sheet 3 of5 US 8,489,358 B2 Washing Machine Horizontal axis Vertical axis r m M. Stirrer FIG. 3 US. Patent Jul. 16, 2013 Sheet 4 of5 US 8,489,358 B2 1111111111 11111111 . 1 I. Ellllii?lllllill m 4 FIG. A Rotation speed (RPM) 165 H. 55 3 Time (9) Applying voltage Deceleration Time 5 FIG. US. Patent Jul. 16, 2013 Sheet 5 of5 US 8,489,358 B2 Engine Current Voltage supply Control Module Temoerature Enaine Temperature Deceleration Time FIG. 6 US 8,489,358 B2 1 METHOD FOR DETERMINING LOADS IN CLOTHES WASHING MACHINES FIELD OF THE INVENTION The present inventions refers to a method for determining loads in clothes Washing machines Which, based on the opera tional parameters of the electronic engine of said Washing machine determines the clothes load. BACKGROUND OF THE INVENTION Methods for measuring or estimating the load in a clothes Washing machine are frequently found in the state of the art. These methods are of paramount importance as through the measurement of the clothes load it is possible to program the Washing time and quantity of Water used for the operations of a Washing machine more precisely. Consequentially, it is also possible to save Water and electrical energy, Which has been a frequent and common concern With many technological developments, not just those Which belong to the same ?eld as the present invention. Besides introducing advantages from an economic vieW point, the methods of load measurement of the state of the art have been used together With control systems to automate operations of the Washing machine, bringing practical advan tages to the user. As an example of the state of the art for a method of load measurement for Washing machines, patent document US. Pat. No. 5,241,845 may be cited. This document describes a method Which estimates the clothes load in Washing machines from the measurement of the difference of phase angle betWeen the engine current phase and the voltage sup ply phase of the same. Thus, this document sustains that the decrease of the difference of the phase angle is proportional to the potency of the engine. As such, considering that the engine potency is proportional to the volume of clothes to be Washed, the changing of the phase angles is associated With the quantity of clothes in the basket of the Washing machine. Beyond this measurement characteristic, the method described in this US document uses other variables to auto mate the operation of the Washing machine, such as: type of clothes, volume of detergent, type of detergent, transparency of the Water and temperature of the Water. There is at least one sensor and at least one circuit associated to each of these variables. As such, the method combines these variables through a neural network, to achieve the objective of control ling the Washing operations of the Washing machine. As you can see, the method described in this patent US. Pat. No. 5,241,845 takes many variables beyond the clothes load into consideration to automate the operation of the Wash ing machine. Although these other variables bring advantages to the consumer, the implementation cost of this method is high, considering the number of components necessary to measure and deal With the variables. Another example of the state of the art is contained in patent document US. Pat. No. 6,038,724. This document describes a method Which estimates the clothes load in a Washing machine from variables of position and speed. More speci?cally, the method calculates the clothes loads moment of inertia based on the acceleration of the mobile assembly (in this case, stirrer) and the engine phase angle. Throughout the text of document US. Pat. No. 6,038,724 it is stated that the method described requires a simple system of sensors and a controller for its viability. HoWever, despite the method being able to be implemented through loW cost com ponents, it should be noted that the calculation of the moment 20 25 30 35 40 45 50 55 60 65 2 of inertia presented by this document does not take into con sideration that the load distribution Within the mobile assem bly in?uences the value Which this quantity adopts. Besides this, the fact that other factors can in?uence the acceleration of the mobile assembly, such as, for example, the temperature of the engine, is also not taken into consideration. Therefore, the load estimate that does not take into account these char acteristics of the moment of inertia is imprecise, and, there fore, needs to be improved in order to be employed success fully by those skilled in the art. In this sense, it should be noted that the state of the art still does not include a method for the estimation of clothes load Which is e?icient and, at the same time, has loW implemen tation cost. Objectives of the Implementation Therefore, providing a method to measure the clothes load in a Washing machine Which is ef?cient, reliable and robust While being loW cost is an objective of the present invention. SUMMARY OF THE INVENTION The objectives of the present invention are achieved through a method of load measurement in Washing machines Which comprises the folloWing steps: acceleration of the mobile assembly of the Washing machine until the mobile assembly reaches a loW rotation speed; acceleration of the mobile assembly until the mobile assembly reaches a medium rotation speed faster than the speed of the ?rst step; shutdoWn of the engine, Whereby the engine Which turns the mobile assembly is turned off; acceleration of the mobile assembly until it reaches a loW speed, Whereby the speed of the engine Which turns the mobile assembly is increased up to a pre determined rotation speed limit; measurement, Whereby parameters relative to the engine are measured; acceleration of the mobile assembly until it reaches a medium speed, Whereby the engine current is measured; shutdoWn of the engine and measurement of the deceleration time, Whereby said engine is turned off and turns through inertia and the time spent from the shutdoWn up to a pre-determined minimum speed limit is reached, is measured; repetition, Whereby, the folloWing steps are repeated at least once: acceleration of the mobile assembly until it reaches a loW rotation speed; mea surement, acceleration of the mobile assembly until it reaches a medium speed and shutdoWn of the engine and measure ment of the deceleration time, calculation of the average of each one of the parameters measured in the previous step; and obtainment of the clothes load value based on the values obtained in the previous step. BRIEF DESCRIPTION OF THE DRAWINGS The ?gures shoW: FIG. liA ?owchart that illustrates the ?rst preferential embodiment of the method of the present invention; FIG. 2iA ?oWchart that illustrates the second preferential embodiment of the method of the present invention; FIG. 3iThe types of Washing machine upon Which the method of the present invention may be implemented; FIG. 4iA sectional vieW of a Washing machine With a vertical axis; FIG. SiA graphic Which represents the behavior of the engine, in terms of rotation speed, in relation to time, in the ?fth and sixth steps of the method of the present invention; and FIG. 6iA diagram of the basic architecture of the neural netWork used in one of the embodiments of the present inven tion. US 8,489,358 B2 3 DETAILED DESCRIPTION OF THE INVENTION As you can see from FIG. 3, the types of Washing machine to Which the present invention can be applied are illustrated. Preferably, but not exclusively, the method of the present invention is applied to a Washing machine With a vertical axis 6, as Well as those Which possess stirrer 2 or impeller 3. In this respect, to support the description of the method of the present invention, a conventional Washing machine shall be brie?y described based on FIG. 4. A conventional Washing machine, Which may bene?t from the method for determining loads of the present invention, comprises, basically, a mobile assembly, an engine 5, a source of poWer for the engine and a control module. The mobile assembly, for the purposes of this invention, may consist of a basket 1 and on the machines With a vertical axis 6 by a stirrer 2 or impeller 3 located Within a tank 4. The basket is the component of the Washing machine in Which the clothes are arranged for the realiZation of Washing. Besides this, the basket may be associated With an electric engine 5 so as to move angularly in order to centrifuge the garments inside and, therefore, remove the excess of Water from the clothes via holes existing on its side Wall, Which accelerate the drying process. The tank, on its part, is a reservoir in Which Water, detergents and other products related to Washing clothes are added. Besides this, the stirrer is generally elon gated and the impeller has the format of a plate With protru sions, With it being that both project from the base of the basket 1 in an upWards direction, also being able to be asso ciated to an electric engine 5 in order to move angularly and promote the friction betWeen the items of clothing inside the basket. In this respect, therefore, it should be understood that the term “mobile assembly”, used throughout the description of the invention, refers to the parts of the clothes Washing machine Which move, and may be, depending on the model of the Washing machine, the basket and the stirrer 2 or impeller 3. On its part, the engine 5, in the case of an electric engine, is responsible for moving the mobile assembly. In the context of the present invention, the electric engine 5 is a conventional Washing machine engine. The engines source of poWer is, preferably, the electrical energy netWork, nevertheless, it may be comprised by other means of poWer Which are not the electrical energy netWork and Which meet the speci?cations of the engine. The engine control module, on the other hand, comprises a control circuit to control the starting, the opera tion, and the stopping of the engine, based on the Washing functions of the Washing machine. Besides this, the control module comprises means for storing variables and param eters shoWn for the performing of procedures and functions Which involve, for example, the regulation of the amount of Water present in the basket or, even, the time necessary for each operation of the Washing machine. In the case of the present invention, the control module is, additionally, respon sible for the control and execution of the steps provided, Which involves, beyond the control of the operation itself, the performance of calculations, acquisition of parameters and provision of an exit, i.e., the availability of the clothes load present in the Washing machine. The conventional Washing machines may furthermore comprise means Which Will transmit the engine rotation 5 to the mobile assembly, these means comprising, generally, a belt. Since the invention has been put into context, beloW, its preferential embodiments shall be explained based on the Figures. 20 25 30 35 40 45 50 55 60 65 4 Initially, considering that a user adds a given amount of clothes to the inside of the basket of the Washing machine and selects one of the Washing options of the machine, the method of the present invention is activated, by actuating the control module, preferably, before the start of the actual Washing of clothes. As such, bearing in mind that some small items of clothing may be throWn out of the basket due to being only slightly Wet or covered only slightly by Water, the method of the present invention provides in its ?rst step El a constant increase of Water over the clothes. As such, the ?rst step El comprises an acceleration of the mobile assembly, from the pause, until it reaches a loW rota tion speed, preferably betWeen 25 and 50 rpm, With it being that, as the mobile assembly is being accelerated, a given quantity of Water, around 2 liters, is poured over the clothes. Thus, any small item of clothing being eventually throWn out of the basket is avoided. Despite preferential rotational speed values and volumes of Water being cited, it should be under stood that these values may vary depending on the type of engine being used or, furthermore, depending on other project variables. After avoiding the problem With the small items of cloth ing, the method of the present invention continues to the second step E2, in Which the mobile assembly is again accel erated, hoWever, this time, up to a medium rotation speed, preferably betWeen 150 and 200 rpm, this medium speed being faster than the speed of the ?rst step E1. The objective of spinning the mobile assembly to this medium speed is to disperse the clothes around the basket in order to improve the distribution of the load and, consequentially, minimize the variations at the moment of inertia of this load. The variations at the moment of inertia of the load prejudice the precise measurement of the parameters to be used in the present invention, since the moment of inertia of the load in?uences the rotation and acceleration of the engine, as, for example, a large moment of inertia causes a sloWer acceleration. Since the load is duly immersed in Water and distributed in a more uniform Way, the engine that turns the mobile assem bly is turned off, causing the mobile assembly to decelerate until it stops. This deceleration corresponds to the third step E3 of the method of the present invention. In the forth step E4 of the method of the present invention the mobile assembly is again accelerated up to a loW rotation speed, preferably betWeen 25 and 50 rpm, this is done so that the mobile assembly leaves the stationary state and ignores the static friction Which may generate more noise in the measurements. Besides this, for the application of the method of the present invention to machines in Which the coupling betWeen the mechanism and the axis of the engine is done by an actuator, this step E4 of acceleration of the mobile assem bly until a loW speed is reached may be eliminated. The objective of imposing a loW speed upon the mobile assembly is to verify Whether the mechanism is correctly engaged. FIG. 2 illustrates the second preferential embodiment of the present invention. In the ?fth step E5 of the method, the parameters relating to the engine are measured. This measurement occurs during the acceleration E4 of the mobile assembly at a loW speed, being described here as a separate step With the objective of clari fying the explanation of the functioning of the invention. In the embodiment of the invention that does not use the accel eration step E4 of the mobile assembly to a loW speed the measurement is done With the engine stopped, Which occurs after the step of engine shutdoWn E3. As you can see, the present invention does not perform the measurement or calculation at the moment of inertia of the clothes load directly, and it indeed measures the amount of US 8,489,358 B2 5 energy spent by the engine to accelerate the mobile assembly, With the load inside, from a lower to a higher speed, With the energy being obtained by measuring the engine current With a constant sampling rate and summing this current While the engine is accelerating the mobile assembly until it reaches a desired speed. In this step the parameters measured by sensors present in the machine are: line voltage, engine temperature and engine control module temperature. In the folloWing steps the engine current and the deceleration time of the mobile assembly are to be measured to compose the entry variables necessary to the measurement of clothes load. After having measured the parameters, the mobile assem bly is again accelerated in the sixth step E6 of the present invention until a medium speed is reached. In this step, the speed of the engine that turns the mobile assembly is increased up to a pre-determined rotation speed limit, prefer ably around l70 rpm, but other speeds may be used depending on the necessities of the application. More precisely, in the sixth step E6 the engine is acceler ated from a loW rotation speed, as can be seen in FIG. 5. The preferential value of this loW speed is 35 rpm. As such, through the application of a variable engine supply voltage, the control module of the machine tries to maintain a constant acceleration rate. Consequentially, the greater the load in the basket of the machine the more energy is necessary to have the same acceleration rate, compared With a situation of little load in the basket, Which makes the engine current propor tional to the load amount in the basket. The control module maintains the application of said voltage supply until the engine reaches a pre-determined rotation speed, this being preferably 1 65 rpm. When this value is reached, the method of the present invention advances to the seventh step E7. Even during this acceleration stage E6 the engine current is measured. Preferably, the engine current is measured betWeen 55 and 155 rpm, as can be seen in FIG. 5. Neverthe less, other values may be adopted, depending on the needs and restrictions of the application, With it being Wise to bear in mind that higher speeds help in the differentiation of loads, but amplify the problem of throWing small items of clothing outside the machine. After reaching the maximum rotation speed value the method of the present invention, as already mentioned, pro ceeds to the seventh step E7. In this seventh step E7, the engine Which turns the mobile assembly is shutdoWn, causing the turning of the mobile assembly by inertia. From the moment of shutting doWn the engine, the deceleration time is measured, i.e., the time Which the mobile assembly takes to reach a pre-determined minimum speed limit. This time inter val is also a parameter used for the determination of the clothes load that is in the basket. It is important to note that the shutdoWn of the engine in the seventh step E7 may not necessarily occur When its rotation speed reaches the pre-determined maximum speed limit (end of the sixth step E6). There may be a time interval betWeen the instance in Which the maximum limit is reached and the instance in Which the engine is shutdoWn, so that the speed of the mobile assembly can stabiliZe. The preferable case illus trated in FIG. 5, shoWs that there is this said time interval until the engine is shutdoWn. It should be understood that this characteristic is not a factor Which limits the scope of the present invention. After acquiring this parameter, the method of the present invention continues to the eighth step E8 Which is the repeti tion of the forth E4, ?fth E5, sixth E6 and seventh E7 steps at least once before the performance of the folloWing step. The objective of these repetitions is to form a selection of data for 20 25 30 35 40 45 50 55 60 65 6 each parameter, as such, it being possible, from the calcula tion of the average of each of these parameters, to obtain reliable values for the determination of the load. In this respect, the said repetition may occur more than once, depending on the need for precision or on other factors Which make it necessary to compose an average from a greater quantity of samples. Thus, the ninth step E9 just consists of the calculation of the average of each one of the parameters measured through out the performance of the previous steps, including the times in Which these Were repeated. Thus, the average for line voltage, control module temperature, engine temperature, sum of the engine current and the time taken for the engine to reach the minimum rotation speed value, is obtained. Finally, as the ?nal step, the method of the present inven tion uses the averages calculated during the previous step to measure the clothes load in the Washing machine. For this tenth step E10 the present invention provides at least tWo possible embodiments. In a preferable ?rst embodiment the load is determined from the application of the folloWing empirical equation: 2 V Z Tm 2 Tc 2 C E Td Load=0zl +bl +cl +dl +2l n n n n n Where, VILine voltage, TmIEngine temperature, Tc:Control module temperature, Ciengine current, Td:Deceleration time (time that the engine takes to stop after being turned off), nInumber of repetitions of the seventh step and a, b, c, d, e are constants obtained empirically through the analysis of tests performed. More precisely, the parameters a, b, c, d, e are Weights obtained through tests dictated by the statistical method “Design of Experiment (D.O.E.)”. In a second embodiment the load is determined by the use of the average values in a neural netWork (FIG. 6). The neural netWork used in this invention has an input layer Which com prises the folloWing parameters measured in the previous steps: line voltage, engine temperature, engine control mod ule temperature, sum of the engine current and deceleration time. Besides this the said neural netWork comprises at least one hidden layer and one output neuron. The Weights and the linear coe?icients Were adjusted, subjecting the netWork to a set of training data obtained by executing the described algo rithm in several clothes Washing machines and several times in each machine. Thus, the load determined by the method of the present invention can be applied to the Washing machines control system to adjust the Water level. As such, as you can see, the method of the present invention is simple and of loW cost, achieving, therefore, the objectives that it proposes. Finally, it is important to note that the nomenclature of ordinal numbers used here to illustrate the sequence of steps may vary depending on the embodiment of the invention. For example, in the case of the embodiment of the present inven tion that does not comprise the step of the acceleration of the mobile assembly E4, the folloWing steps shall be designated by the ordinal consistent numbers. In this respect, it should not be understood that the designation is a factor Which is limitative of the scope of the present invention, as it Was adopted solely to facilitate the description of the characteris tics of the method for determining loads. With an example of a preferred embodiment having been described, it should be understood that the scope of the US 8,489,358 B2 7 present invention covers other possible variations, it being limited solely by the Wording of the attached claims, therein including possible equivalents. The invention claimed is: 1. A method for determining loads in clothes Washing machines, CHARACTERIZED by comprising the folloWing steps: (E1) Acceleration of a mobile assembly of the Washing machine until the mobile assembly reaches a pre-deter mined rotation speed (E2) Acceleration of the mobile assembly until the mobile assembly reaches a rotation speed faster than the rota tional speed in the ?rst step (E1); (E3) ShutdoWn of an engine, Whereby the engine Which turns the mobile assembly is shutdoWn; (E4) Acceleration of the mobile assembly until it reaches a pre-determined rotational speed, Whereby the rotational speed of the engine Which turns the mobile assembly is increased up to a pre-determined rotation speed limit; (E5) Measurement, Whereby parameters regarding the engine are measured; (E6) Acceleration of the mobile assembly until it reaches a rotational speed faster than the rotational speed in the forth step (E4), Whereby the engine current is measured; (E7) ShutdoWn of the engine and measurement of the deceleration time, Whereby the said engine is turned off and turns via inertia, With the time spent from the shut doWn until a pre-determined minimum rotational speed limit is reached, being measured; (E8) Repetition, Whereby, the folloWing steps are repeated at least once: acceleration of the mobile assembly until it reaches a pre-determined rotation speed, Whereby the rotational speed of the engine Which turns the mobile assembly is increased up to a pre-determined rotation speed limit (E4); Measurement, Whereby parameters regarding the engine are measured (E5); acceleration of the mobile assembly until it reaches a rota tional speed faster than the rotational speed in the forth step (E4), Whereby the engine current is measured (E6); and shutdoWn of the engine and measurement of the decelera tion time, Whereby the said engine is turned off and turns via inertia, With the time spent from the shutdoWn until a pre-determined minimum rotational speed limit is reached, being measured (E7); (E9) Calculation of an average of each one of the param eters measured in the previous step (E8); and (E10) Obtainment of the value of clothes load based on the values obtained in the previous step (E9), Wherein the value of clothes load is obtained by an equation n n n n n 2v 2T, ETC 2c zTd l +bl +cl +dl +el n n n n n Load : a Where, VILine voltage, TmIEngine temperature, Tc:Control module temperature, Ciengine current, Td:Deceleration time (time that the engine takes to stop after being turned off), nInumber of repetitions of the seventh step and a, b, c, d, e are constants obtained empirically through the analysis of tests performed; or by the use of the average values in a neural netWork having an input layer Which comprises the folloWing parameters measured in the previous steps: line voltage, 20 25 30 35 40 45 50 55 60 65 8 engine temperature, engine control module temperature, sum of the engine current and deceleration time. 2. Method for determining loads in clothes Washing machines, in accordance
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。