高中数学 第三章 导数应用 3.2.2 最大值、最小值问题课件2 北师大版选修22.ppt_第1页
高中数学 第三章 导数应用 3.2.2 最大值、最小值问题课件2 北师大版选修22.ppt_第2页
高中数学 第三章 导数应用 3.2.2 最大值、最小值问题课件2 北师大版选修22.ppt_第3页
高中数学 第三章 导数应用 3.2.2 最大值、最小值问题课件2 北师大版选修22.ppt_第4页
高中数学 第三章 导数应用 3.2.2 最大值、最小值问题课件2 北师大版选修22.ppt_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 2 2最大值 最小值问题 求极值的步骤 2 求导数 3 解方程 4 对于方程的每一个解 分析在左右两侧的符号 确定极值点 在两侧若的符号 1 左正右负 则为极大值点 2 左负右正 则为极小值点 3 相同 则不是极值点 1 求函数f x 的定义域 一 复习引入 极值是函数的局部性质 而不是在整个定义域内的性质 即 如果是的极大 小 值点 那么在附近找不到比更大 小 的值 但是 解决实际问题或研究函数性质时 我们往往更关心在某个区间上 函数的哪个值最大 哪个值最小 若是在上的最大 小 值点 则不小 大 于在此区间上的所有函数值 由图知 最大 小 值在极大 小 值点或区间的端点处取得 二 新课讲授 问题 对于函数的最值概念的学习 你认为有哪些方面是值得注意的 1 函数的最值是一个整体性概念 最大值必须是整个区间上所有函数值中的最大者 最小值必须是整个区间上所有函数值中的最小者 2 函数的最大值和最小值是比较整个定义区间的所有函数值得到的 极大值和极小值是比较极值点附近的函数值得出的 极值可以有多个 但最值只能有一个 极值只能在区间内取得 最值可以在端点取得 例1 求函数在区间上的最值 求最值的步骤 1 求f x 在 a b 内的极值 3 将f x 的各个极值与端点值f a f b 进行比较 其中最大的一个是最大值 最小的一个是最小值 2 算f x 的端点值f a f b 变式训练1 求函数在区间 1 e 上的最值 日常生活中 人们常常会遇到这样的一些问题 在一定条件下 怎样使得 用料最省 利润最大 成本最低 选址最优 等等 这类最值问题一般都可以利用函数与导数的知识来解决 三 问题探究 易拉罐包装的设计问题市场上有许多饮料都是用金属制成的易拉罐包装 包装的形状也是多种多样的 在包装设计中有许多数学问题 1 背景分析如何使得容量相同的饮料包装所需的材料最少 就是节约包装成本的含义 据调查容量为330ml的饮料包装最为常见 仔细观察发现 这种易拉罐的顶盖比底部和侧壁部分要厚 经调查得知 这种设计是为了保证开启时的冲力不致将顶盖掀起 顶盖厚度近似为其他部分的3倍 相应的单位面积的成本也是侧壁部分的3倍 下面我们讨论 在容量一定的情况下 怎样设计能节约包装的成本 2 建立数学模型的方案 1 模型假设1 一个易拉罐近似地看成一个圆柱体 2 影响易拉罐包装成本的量有底面半经 高 侧面面积 顶盖和底部的面积 其他因素忽略不计 2 变量表示1 设易拉罐的底面半径为 单位 cm 2 设易拉罐的高为 单位 cm 3 易拉罐的体积为 单位 ml 4 易拉罐的侧壁和底部每平方厘米的成本为1 顶盖每平方厘米的成本为35 易拉罐的包装成本为 3 求包装成本的最小值 3 求包装成本的最小值 4 实际应用分析 理论值 高约为cm 底面直径约为cm 高 底面直径 测量值 高约为cm 底面直径约为cm 高 底面直径 四 课堂小结 1 知识 2 方法 3 思想 五 作业布置 p69a组2 4 一边长为48cm的正方形铁皮 四角各截去一大小相同的正方形后折起 可做成无盖的长方体容器 其容积v是关于截去小正方形边长x的函数 1 随x的变化 容积v如何变化 2 截去小正方形边长为多少时 容积最大 最大容积是多少 动手做一做 分析 解决实际应用问题 首先要分析并列出函数关系 要注意根据实际意义写出定义域 求函数值的变化情况即单调性 求导判断导数符号即可 求最值就是求导 解方程求出极值点 最后通过比较函数值写出最值 解 求导得 令 得 分析可知 x 8是极大值点 极大值为 v f x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论