山东省日照市九年级数学《22.2降次——解一元二次方程》教案(4).doc_第1页
山东省日照市九年级数学《22.2降次——解一元二次方程》教案(4).doc_第2页
山东省日照市九年级数学《22.2降次——解一元二次方程》教案(4).doc_第3页
山东省日照市九年级数学《22.2降次——解一元二次方程》教案(4).doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省日照市九年级数学22.2降次解一元二次方程教案(4)教学内容本节课主要学习用根的判别式b2-4ac来判别ax2+bx+c=0(a0)的根的情况及其运用。教学目标 知识技能掌握b2-4ac0,ax2+bx+c=0(a0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a0)有两个相等的实数根,反之也成立;b2-4ac0,有两个不相等的实根;(2)b2-4ac=12-12=0,有两个相等的实根;(3)b2-4ac=-441=0(0时,根据平方根的意义,等于一个具体数,所以一元一次方程的x1=x1=,即有两个不相等的实根当b2-4ac=0时,根据平方根的意义=0,所以x1=x2=,即有两个相等的实根;当b2-4ac0时,一元二次方程ax2+bx+c=0(a0)有两个不相等实数根即x1=,x2= (2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a0)有两个相等实数根即x1=x2= (3)当b2-4ac0时,一元二次方程ax2+bx+c=0(a0)没有实数根【活动方略】学生活动:学生通过思考,归纳结论老师活动:在学生讨论时,注意引导学生根据平方根的意义,得出结论。【设计意图】推出一元二次方程ax2+bx+c=0(a0)的b2-4ac的情况与根的情况的关系【应用】例:不解方程,判定方程根的情况 (1)16x2+8x=-3 (2)9x2+6x+1=0 (3)2x2-9x+8=0 (4)x2-7x-18=0 分析:不解方程,判定根的情况,只需用b-4ac的值大于0、小于0、等于0的情况进行分析即可 解:(1)化为16x2+8x+3=0 这里a=16,b=8,c=3,b2-4ac=64-4163=-1280 方程有两个不相等的实根 (4)a=1,b=-7,c=-18 b2-4ac=(-7)2-41(-18)=1210 方程有两个不相等的实根【活动方略】学生活动:学生首先独立思考,自主探索,然后交流教师活动:在学生解决问题的过程中,适时让学生讨论解决遇到的问题。【设计意图】主体探究、通过解几个具体的问题,进一步体会一元二次方程的根与的关系三、 反馈练习 不解方程判定下列方程根的情况: (1)x2+10x+26=0 (2)x2-x-=0 (3)3x2+6x-5=0 (4)4x2-x+=0 (5)x2-x-=0 (6)4x2-6x=0 (7)x(2x-4)=5-8x【活动方略】学生独立思考、独立解题 教师巡视、指导,并选取两名学生上台书写解答过程(或用投影仪展示学生的解答过程)【设计意图】检查学生对基础知识的掌握情况.四、 应用拓展 例1:某养鸡厂的矩形鸡舍长靠墙现在有材料可以制作竹篱笆13米,若欲围成20平方米的鸡舍,鸡舍的长和宽应是多少?能围成22平方米的鸡舍吗,若可以求出长和宽,若不能说明理由【活动方略】学生活动:学生在思考的基础上分组讨论,利用一元二次方程的知识解决上述问题。教师关注:(1)学生是否能够迅速设出未知数,列出方程;(2)学生是否能够准确判断问题的答案;(3)学生能否选择合理的解决问题的方案例2:若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+30的解集(用含a的式子表示) 分析:要求ax+30的解集,就是求ax-3的解集,那么就转化为要判定a的值是正、负或0因为一元二次方程(a-2)x2-2ax+a+1=0没有实数根,即(-2a)2-4(a-2)(a+1)0就可求出a的取值范围 解:关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数根 (-2a)2-4(a-2)(a+1)=4a2-4a2+4a+80 a0即ax-3 x- 所求不等式的解集为x0一元二次方程ax2+bx+c=0(a0)有两个不相等的实根;b2-4ac=0 一元二次方程ax2+bx+c=0(a0)有两个相等的实根;b2-4ac0一元二次方程ax2+bx+c=0(a0)没有实数根及其它的运用2作业:课本p45 习题222 第9、11、12题 【活动方略】教师引导学

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论