




已阅读5页,还剩4页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.1认识三角形教案教学目标:1、理解三角形的概念,掌握三角形的特征、特性,能按三角形角的特点给三角形分类。 2、培养学生的比较、分析概括以及探究的能力,发展学生的创新思维。3、在小组合作学习中培养学生的团结合作精神,激发学生的数学学习兴趣,增强学习的自信心。一、 创设情境 自然引入 师:多媒体显示图片,让学生找图中你熟悉的几何图形.生:积极投入,找到了线段、三角形、长方形、梯形等.师:从这节课开始我们要学习三角形的有关知识,先来学习3.1认识三角形(师板书3.1认识三角形)师:你能生活中的三角形实例吗?生:三角板、人字架房屋、自行车的大梁、埃及金字塔等设计意图: 使学生能从生活中抽象出几何图形 ,感受到我们生活在几何图形的世界之中. 培养学生善于观察生活、乐于探索研究的学习品质,在课堂上用源于学生收集的图片展开教学,从而更大地激发学生学习数学的兴趣.二、 自主学习 理解概念 师:引导学生参照教材提供的屋顶框架图,提出问题你能从中找出四个不同的三角形吗? 师:多媒体出示自学提纲: 1由不在同一直线上的_条线段_ 接所组成的图形叫做_;表示三角形的符号_.图1aacbabc2、如图1.说出图中三角形可记做_; 三条边是_,也可表示为_; 三个内角是_. 三个顶点是_. 顶点a所对应的边是: 边ac所对应的顶点是:生:自学后,上讲台展示1.三 首尾顺次相接 三角形 edcba图22. abc ab bc ac c a b a 、b、 c;点a、b、c;bc 或a;点b、师:出示练习如图2下面图形中含几个三角形?用符号表示出来。生:六个,分别是abc、abd、abe、acd、ace、ade;师:说出你的方法、技巧生1:按住一边不动,象数线段一样往后数。生2:也可以按小、中、大的顺序数.如:小的有3个,分别是:abc、acd、ade;中型的有2个分别是:abd、ace;大的有一个abe.师:太棒了,掌声送给他.设计意图:通过上题的分析引导学生归纳三角形的概念、基本要素(边、角、顶点),体会用符号表示三角形的必要性,培养学生观察分析能力及归纳总结的能力.要求学生对三角形的概念牢固掌握并能熟练应用,能在图中找出三角形的个数.三、合作学习 推理归纳师:三角形有3个内角,这3个内角有什么关系?师:请同学们观看幻灯片,各小组按要求亲自动手实验,你能得到什么结论?幻灯片(一):剪下内角,动手拼拼看,三个内角是否为180度。生:动手实验,并将自己的做法展示给大家。(实物投影)。(一名学生亲自演示,一名与师进行师生合作)最后得出结论:三角形内角和等于180度。(师板书)师:演示幻灯片(二):进一步从直观感性上确定结论的正确性。2数学证明,验证结论:师:同学们观察和总结的非常棒,但这只是实验,而观察与实验得到的结论不一定正确,可靠,这样就需要通进数学证明来验正结论是否正确,请同学们结合幻灯片(二),交流讨论说明结论为什么成立。生:交流讨论。师:将图画在黑板上,并巡视指导。生:总结汇报,说明结论成立的理由。师:同学们表达的十分准确,理由也很充分,很好说明:延长bc到d点,在b外部,以b点为顶点,ba为一边,作1=a, 那么cdab. 因为cdab所以b=2. 又因为:1+2+acb=1800所以:a+b+acb=18003.巩固练习:(1)abc中,a=35,b=75求c的度数.(2) abc中,c=90,b=75求a的度数.(3) abc中,a=50,b=c求c的度数.(4) abc中,a:b:c=1:2:3求abc各角度数.生:口答,抢答(过程略)设计意图:在这一环节中一方面充分利用学生已有的知识和经验,另一方面使学生通过多角度思考、分析、说理、操作加深学生对三角形内角和为180的理解,从而突出和解决了本节课的重点,同时在教学中注重在直观操作的基础上进行简单的推理,使学生学会用一定的方式有条理地表达推理过程,为今后的几何证明打下基础实际教学效果:通过小组讨论、直观教具演示等手段,激发了学生学习的兴趣,创设师生间民主、互动的学习氛围,为每一个学生创设了平等参与学习的机会通过合作交流,使学生在横向交流中各尽所能,取长补短,各有所获,在交往互动中共同发展四、游戏练习 激发兴趣师:借助下图提出问题:(1)下面的图(1)、图(2)、图(3)中的三角形被遮住的两个内角是什么角?试着说明理由(2)将图(3)的结果与图(1)、图(2)的结果进行比较,可以将三角形如何按角分类?生1猜测(1)两个都是锐角.因为三角形内角和是180有一个直角,直角等于90,所以另外两个都是锐角生2两个都是锐角.因为三角形内角和是180,钝角大于90而小于180,所以另外两个都是锐角。生3:可能有3种情况,情况(一):两个都是锐角;情况(二):一个直角和一个锐角;情况(三):一个钝角和一个锐角师:根据生3说的大家把这3种情况画出来。生:动手在课本上画图.师:进一步说出根据教的特点,三角形可以分为几类?生:锐角三角形 直角三角形 钝角三角形三角形的分类锐角三角形三个内角都是锐角钝角三角形有一个内角是钝角角有一个内角是直角直角三角形师: 师:很好,请看练习1.观察下面的三角形,并把它们的标号填入相应图内师:练习2.已知a,b,c是abc的三个内角,a70,c30 , b( )3.直角三角形一个锐角为70,另一个锐角( )度4.在abc中,a=80,b=c,则c=( )5.如果abc中,abc=235,此三角形按角分类应为 ( )想一想:一个三角形中会有两个直角吗?可能两个内角是钝角或锐角吗?设计意图:关于练习的安排是按照由易到难,由简到繁的学习心理和认知规律过程设计的,便于学生循序渐进地掌握知识在练习的过程中对学生给予及时的肯定、表扬、激励,使不同的学生得到不同的发展,特别是“学习有困难”的学生也能够积极参与师:直角三角形是特殊的三角形,所以边和角有特殊的名称,请说出直角三角形各部分名称生:如图直角的两条边是直角边,直角所对的边是斜边.师:怎么用符号表示直角三角形?生:1、常用符号“rtabc”来表示直角三角形abc.师:直角三角形的两个锐角之间有什么关系?生:直角三角形两个锐角和是90,也就是互余.师:为什么?生:根据三角形内角和是180,减去直角90,其余的两个锐角互余.师:很好,掌声鼓励.师:做练习1.如果abc中,abc=123,判断这个三角形是什么形状?2. 如图,一艘轮船按箭头所示方向行驶,c处有一灯塔,轮船行驶到哪一点时距离灯塔最近?当轮船从a点行驶到b点时,acb的度数是多少?当轮船行驶到距离灯塔最近点时呢?设计意图:通过第1个活动,使学生从游戏中归纳出根据三角形内角的大小只能把三角形分成三类然后让学生任意说出三角形的两个内角的度数,请其他同学说出是什么三角形通过对三角形分类的学习,使学生了解数学分类的基本思想当只露出一个内角为锐角时,引导学生发现三种情况都是可以的,即两个锐角,一个锐角一个直角,一个钝角一个锐角,从而使学生初步体会反证法的思想,为后面进一步研究反证法奠定基础第2个活动是学生在理解三角形内角和为180之后的延伸直角三角形的符号、斜边、直角边以及直角三角形两个锐角互余,培养学生良好的学习习惯,提高学生灵活运用所学知识的能力进一步学习上述游戏活动中得出的直角三角形的相关知识直角三角形的符号、斜边、直角边,并提出问题:直角三角形有许多性质,你能发现它的两个锐角之间有什么关系吗?从而引导学生发现直角三角形两个锐角互余六、课堂小结 系统归纳师:引导学生进行小结生1:(积极小结,互相补充.) 三角形的有关概念,边、角、顶点等九个元素.生2:三角形内角和是180.我明白了三角形内角和为什么是180,会据条件求三角形内角度数.生3:我知道了三角形按角分类,可以分为锐角三角形、 直角三角形、钝角三角形。生4:我学会了直角三角形两个锐角互余这个性质;直角三角形的各部分名称,直角三角形的符号表示.设计意图:鼓励学生结合本节课的学习谈自己的收获与感想,包括三角形的内角和为180,直角三角形的表示法及有关概念,直角三角形两锐角互余,三角形按角分类学生通过自己的思考、归纳、总结本节课所学的知识要点,并敢于提出问题,说出自己的困惑,使学生带着问题走进课堂,又带着思索走出课堂,不仅激发了学生的学习兴趣,而且使数学学习延伸到课外达标检测一、选择题:1若点d、e为abc的边ac上任意两点,则图1中共有三角形有( )个a4 b5 c6 d72如果在abc中,a70b,则c等于( ) 图1a 、35 b、70 c 、110 d、1403. 如图2,已知abc为直角三角形,c=90,若沿图中虚线剪去c,则1+2等于( )(a)90 (b)135 (c)270 (d)315二、填空题:1把一副常用的三角尺如图3所示拼在一起,那么图中ade是 度2. 直角三角形中两个锐角的差为20,则两个锐角的度数分别为 、三、解答题:1、如图6,abc中,bd是abc的角平分线,debc,交ab于e,a=60,bdc=95,求bde各内角的度数.七、布置作业课本65页,习题3.1知识技能1、2、3、4教学反思:成功之处:1七年级的孩子思维活跃,模仿能力强,对新知事物满怀探求的欲望,他们乐于尝试、探索、思考、交流与合作,在老师引导下能针对某一问题展开讨论并归纳总结。但是受年龄特征的影响,他们知识迁移能力不强,推理能力还需进一步 培养,因而老师有必要给学生充分的自由和空间。这节课的内容较多,可是在教学过程中,一定要保证学生的操作活动以及思考时间,还要注意详略得当,对与三角形内角和的推导,只要求口头说明。不要求书面证明,这样降低要求,也节约了时间.2、让学生体验“做数学”、“说数学”在教学过程中学生
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 共享自习室项目实施方案
- 贵州省六盘水市水城区2023-2024学年高一上学期12月月考历史含解析
- 2025年开展安全生产月活动实施方案 (3份)
- 江西工业贸易职业技术学院《纳米材料表征方法》2023-2024学年第二学期期末试卷
- 广西英华国际职业学院《篮球四》2023-2024学年第二学期期末试卷
- 安徽理工大学《电工电子综合实践》2023-2024学年第二学期期末试卷
- 濮阳石油化工职业技术学院《工业催化》2023-2024学年第二学期期末试卷
- 甘肃机电职业技术学院《计算机应用综合性设计》2023-2024学年第二学期期末试卷
- 广东海洋大学《大数据技术开源架构》2023-2024学年第二学期期末试卷
- 武汉科技大学《环境生态学俄》2023-2024学年第二学期期末试卷
- 【课件】2025年中考地理复习课件:广西乡土地理
- 2025年高考政治三轮冲刺:短评类主观题练习题(含答案)
- 2024统编版七年级历史下册 第18课《清朝的边疆治理》教学设计
- 《嵌入式系统中断》课件
- 计算机视觉在自动驾驶系统中的应用-全面剖析
- 2025届广东省广州市重点中学高考仿真卷英语试题含解析
- 2025至2030中国民宿行业发展状况与未来前景预测研究报告
- 2025银川市辅警考试试卷真题
- 气道净化护理解读
- 电机长期维修合同协议
- 2025年FRM金融风险管理师考试金融风险管理理论试卷
评论
0/150
提交评论