二次函数的图象与性质课堂练习.docx_第1页
二次函数的图象与性质课堂练习.docx_第2页
二次函数的图象与性质课堂练习.docx_第3页
二次函数的图象与性质课堂练习.docx_第4页
二次函数的图象与性质课堂练习.docx_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

实战训练:1二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是( )A A B C D2.一次函数y=ax+b(a0)与二次函数y=ax2+bx+c(a0)在同一平面直角坐标系中的图象可能是()A B C D3.在同一坐标系中,一次函数y=mx+n2与二次函数y=x2+m的图象可能是( ) A B C D4.二次函数y=ax2+bx+c的图象如图所示,则下列关系式错误的是() A a0 B. b0 C b24ac0 D a+b+c05如图,观察二次函数y=ax2+bx+c的图象,下列结论:a+b+c0,2a+b0,b24ac0,ac0其中正确的是()ABCD6.已知二次函数y=ax2+bx+c(a0)的图象如图所示,对称轴是直线x=1,下列结论:abc0;2a+b=0;ab+c0;4a2b+c0其中正确的是()AB只有CD7.二次函数y=ax2+bx+c(a0)的图象如图所示,下列结论:2a+b0;abc0;b24ac0;a+b+c0;4a2b+c0,其中正确的个数是()A2 B3 C4 D58.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是直线x=1,下列结论正确的是()Ab24acBac0C2ab=0Dab+c=0三课堂小结:1.谈谈你本节课的收获;2.运用二次函数的性质时注意“数形结合”的思想方法.四课外拓展:1.已知二次函数y=ax2+bx+c(a0)的图象如图所示,并且关于x的一元二次方程ax2+bx+cm=0有两个不相等的实数根,下列结论:b24ac0;abc0;ab+c0;m2,其中,正确的个数有()A1 B2 C3 D42.如图,已知二次函数y=ax2+bx+c(a0)的图象与x轴交于点A(1,0),与y轴的交点B在(0,2)和(0,1)之间(不包括这两点),对称轴为直线x=1下列结论:abc0 4a+2b+c0 4acb28a bc 其中含所有正确结论的选项是()ABCD3.如图,二次函数y=ax2+bx+c (a0)的图像与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC. 则下列结论:abc0 9a+3b+c0 c1 关于x的方程ax2+bx+c=0 (a0)有一个根为其中正确的结论个数有( )A. 1个 B. 2个 C.3个 D. 4个4如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),对称轴为直线x=1,给出四个结论:c0;若点B(,y1)、C(,y2)为函数图象上的两点,则y1y2;2ab=0;0,其中,正确结论的个数是()A1B2C3D45.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(3,0),对称轴为直线x=1,给出四个结论:b24ac; 2a+b=0; a+b+c0;若点B(,y1)、C(,y2)为函数图象上的两点,则y1y2,其中正确结论是()ABCD6.如图是二次函数y=ax2+bx+c(a0)图象的一部分,对称轴为x=,且经过点(2,0),有下列说法:abc0;a+b=0;4a+2b+c0;若(0,y1),(1,y2)是抛物线上的两点,则y1=y2上述说法正确的是()ABCD7.如图是二次函数y=ax2+bx+c的图象,下列结论:二次三项式ax2+bx+c的最大值为4;4a+2b+c0;一元二次方程ax2+bx+c=1的两根之和为1;使y3成立的x的取值范围是x0其中正确的个数有()A1个B2个C3个D4个8.如图,抛物线y=ax2+bx+c(a0)的对称轴为直线x=1,与x轴的一个交点坐标为(1,0),其部分图象如图所示,下列结论:4acb2;方程a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论