高考数学一轮复习 第三章 导数及其应用 第二节 导数与函数的单调性课件 理.ppt_第1页
高考数学一轮复习 第三章 导数及其应用 第二节 导数与函数的单调性课件 理.ppt_第2页
高考数学一轮复习 第三章 导数及其应用 第二节 导数与函数的单调性课件 理.ppt_第3页
高考数学一轮复习 第三章 导数及其应用 第二节 导数与函数的单调性课件 理.ppt_第4页
高考数学一轮复习 第三章 导数及其应用 第二节 导数与函数的单调性课件 理.ppt_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第二节导数与函数的单调性 总纲目录 教材研读 函数的导数与单调性的关系 考点突破 考点二利用导数求函数的单调区间 考点一利用导数判断或证明函数的单调性 考点三已知函数的单调性求参数的范围 函数的导数与单调性的关系函数y f x 在某个区间内可导 1 若f x 0在该区间内恒成立 则f x 在这个区间内 单调递增 2 若f x 0在该区间内恒成立 则f x 在这个区间内 单调递减 3 若f x 0在该区间内恒成立 则f x 在这个区间内是 常数函数 教材研读 1 函数f x cosx x在 0 上的单调性是 a 先增后减b 先减后增c 单调递增d 单调递减 答案d 在 0 上 f x sinx 1 0 f x 在 0 上单调递减 故选d d 2 若函数f x x sin2x asinx在 单调递增 则a的取值范围是 a 1 1 b c d c 答案cf x 1 cos2x acosx 1 2cos2x 1 acosx cos2x acosx f x 在r上单调递增 则f x 0在r上恒成立 令cosx t 则t 1 1 则 t2 at 0在 1 1 上恒成立 即4t2 3at 5 0在 1 1 上恒成立 令g t 4t2 3at 5 则解得 a 故选c 3 2016北京东城期中 已知定义在r上的函数f x 的图象如图所示 则x f x 0的解集为 a 0 1 2 b 1 2 c 1 d 1 2 a 答案a不等式x f x 0等价于当x 0时 f x 0 即x 0时 函数f x 递增 则1 x 2 或当x 0时 f x 0 即x 0时 函数f x 递减 则x 0 综上 不等式的解集为 0 1 2 故选a 4 函数y x2 lnx的单调递减区间为 0 1 答案 0 1 解析由题意知函数的定义域为 0 由y x 0 x 0 解得0 x 1 所以函数的单调递减区间为 0 1 5 已知f x x3 ax在 1 上是增函数 则a的最大值是3 答案3 解析f x 3x2 a 由题意知在 1 上 f x 0 即a 3x2 又x 1 时 3x2 3 a 3 即a的最大值是3 考点一利用导数判断或证明函数的单调性典例1已知函数f x x 2 ex a x 1 2 讨论f x 的单调性 考点突破 解析f x x 1 ex 2a x 1 x 1 ex 2a 1 设a 0 则当x 1 时 f x 0 所以f x 在 1 单调递减 在 1 单调递增 2 设a 0 由f x 0得x 1或x ln 2a 若a 则f x x 1 ex e 所以f x 在 单调递增 若a 则ln 2a 0 当x ln 2a 1 时 f x 1 故当x 1 ln 2a 时 f x 0 当x 1 ln 2a 时 f x 0 所以f x 在 1 ln 2a 单调递增 在 1 ln 2a 单调递减 方法技巧用导数法判断函数f x 在 a b 内的单调性的步骤 求f x 确定f x 在 a b 内的符号 作出结论 依据是f x 0时为增函数 f x 0时为减函数 提醒研究含参数的函数的单调性时 需注意依据参数取值对不等式解集的影响进行分类讨论 1 1已知函数f x ax3 x2 a r 在x 处取得极值 1 确定a的值 2 若g x f x ex 讨论g x 的单调性 解析 1 对f x 求导得f x 3ax2 2x 因为f x 在x 处取得极值 所以f 0 即3a 2 0 解得a 2 由 1 得g x ex 故g x ex ex ex x x 1 x 4 ex 令g x 0 解得x 0或x 1或x 4 当x0 故g x 为增函数 当 10时 g x 0 故g x 为增函数 综上知g x 在 4 和 1 0 内为减函数 在 4 1 和 0 内为增函数 典例2 2017北京顺义二模 18 已知函数f x pe x x 1 p r 1 当实数p e时 求曲线y f x 在x 1处的切线方程 2 求函数f x 的单调区间 3 当p 1时 若直线y mx 1与曲线y f x 没有公共点 求实数m的取值范围 考点二利用导数求函数的单调区间 解析 1 当p e时 f x e x 1 x 1 f x e x 1 1 f 1 3 f 1 0 曲线y f x 在x 1处的切线方程为y 3 2 f x pe x x 1 f x pe x 1 当p 0时 f x 0 函数f x 的单调递增区间为 当p 0时 令f x 0 得ex p 解得x lnp 当x变化时 f x f x 的变化情况如下表 所以当p 0时 f x 的单调递增区间为 lnp 单调递减区间为 lnp 3 当p 1时 f x e x x 1 直线y mx 1与曲线y f x 没有公共点等价于关于x的方程mx 1 e x x 1在 上没有实数解 即关于x的方程 m 1 x e x 在 上没有实数解 当m 1时 方程 化为e x 0 显然在 上没有实数解 当m 1时 方程 化为xex 令g x xex 则有g x 1 x ex 令g x 0 得x 1 则当x变化时 g x g x 的变化情况如下表 当x 1时 g x min 当x趋近于 时 g x 趋近于 从而g x 的值域为 所以当 即1 e m 1时 方程 无实数解 综合 可知 实数m的取值范围是 1 e 1 方法技巧利用导数求函数的单调区间的两个方法方法一 1 确定函数y f x 的定义域 2 求导数y f x 3 解不等式f x 0 解集在定义域内的部分为单调递增区间 4 解不等式f x 0 解集在定义域内的部分为单调递减区间 提醒写单调区间时 同增 减 区间不能用 连接 方法二 1 确定函数y f x 的定义域 2 求导数y f x 令f x 0 解此方程 求出在定义域内的一切根 3 把函数f x 的间断点 即f x 的无定义点 和上面所求的各根按由小到大的顺序排列起来 然后用这些点把函数f x 的定义域分成若干个小区间 4 确定f x 在各个区间内的符号 根据符号判定函数在每个区间内的单调性 2 1 2018北京朝阳高三期中 18 已知函数f x x2 ax a e x a r 1 求函数f x 的单调区间 2 设g x f x 其中f x 为函数f x 的导函数 判断g x 在定义域内是否是单调函数 并说明理由 解析 1 函数f x 的定义域为 x x r f x x 2 x a e x 当a2 此时f x 为减函数 令f x 0 解得a2时 令f x a 此时函数f x 为减函数 令f x 0 解得22时 f x 的单调递减区间为 2 a 单调递增区间为 2 a 2 g x 在定义域内不是单调函数 理由如下 g x f x x2 a 4 x 3a 2 e x 记h x x2 a 4 x 3a 2 则函数h x 的图象为开口向上的抛物线 方程h x 0的判别式 a2 4a 8 a 2 2 4 0恒成立 所以h x 有正有负 从而g x 有正有负 故g x 在定义域内不是单调函数 考点三已知函数的单调性求参数的范围 典例3设函数f x x3 x2 bx c 曲线y f x 在点 0 f 0 处的切线方程为y 1 1 求b c的值 2 若a 0 求函数f x 的单调区间 3 设函数g x f x 2x 且g x 在区间 2 1 内存在单调递减区间 求实数a的取值范围 解析 1 f x x2 ax b 由题意得即 2 由 1 得f x x2 ax x x a 结合a 0知 当x 0 时 f x 0 当x 0 a 时 f x 0 所以函数f x 的单调递增区间为 0 a 单调递减区间为 0 a 3 g x x2 ax 2 依题意 存在x 2 1 使不等式g x x2 ax 2 0成立 即x 2 1 时 a 2 当且仅当x 即x 时等号成立 所以满足要求的a的取值范围是 2 方法技巧利用函数的单调性求参数的取值范围的解题思路 1 由可导函数f x 在区间 a b 上单调递增 减 可知f x 0 f x 0 在区间 a b 上恒成立 进而列出不等式 2 利用分离参数法求解恒成立问题 3 对等号是否成立进行单独检验 检验参数的取值能否使f x 在整个区间上 或该区间的子区间上 恒等于0 若f x 恒等于0 则参数的这个值应舍去 若只有在个别点 有限点 处有f x 0 则参数可取这个值 3 1 2017北京朝阳期中改编 已知函数f x ex x2 a a r 1 当a 1时 求曲线y f x 在点 0 f 0 处的切线方程 2 若函数f x 在 3 0 上单调递减 试求a的取值范围 解析由题意可知f x ex x2 2x a 1 因为a 1 所以f 0 1 f 0 1 所以曲线y f x 在点 0 f 0 处的切线方程为y 1 x 0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论