




已阅读5页,还剩51页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一章 立体几何初步 1 知识网络系统盘点 提炼主干 2 要点归纳整合要点 诠释疑点 3 题型研修突破重点 提升能力 章末复习提升 1 空间几何体的结构特征 1 棱柱 有两个面互相平行 其余各面都是四边形 且每相邻两个四边形的公共边互相平行 棱锥 有一个面是多边形 其余各面是有一个公共顶点的三角形 棱台是棱锥被平行于底面的平面所截而成的 这三种几何体都是多面体 2 圆柱 圆锥 圆台 球是由平面图形矩形 直角三角形 直角梯形 半圆面旋转而成的 它们都称为旋转体 在研究它们的结构特征以及解决应用问题时 常需作它们的轴截面或截面 3 由柱 锥 台 球组成的简单组合体 研究它们的结构特征实质是将它们分解成多个基本几何体 2 空间几何体的三视图与直观图 1 三视图是观察者从三个不同位置观察同一个空间几何体而画出的图形 它包括主视图 左视图 俯视图三种 画图时要遵循 长对正 高平齐 宽相等 的原则 注意三种视图的摆放顺序 在三视图中 分界线和可见轮廓线都用实线画出 不可见轮廓线用虚线画出 熟记常见几何体的三视图 画组合体的三视图时可先拆 后画 再检验 2 斜二测画法为 主要用于水平放置的平面图形或立体图形的画法 它的主要步骤 画轴 画平行于x y z轴的线段分别为平行于x y z 轴的线段 截线段 平行于x z轴的线段的长度不变 平行于y轴的线段的长度变为原来的一半 三视图和直观图都是空间几何体的不同表示形式 两者之间可以互相转化 这也是高考考查的重点 根据三视图的画法规则理解三视图中数据表示的含义 从而可以确定几何体的形状和基本量 3 几何体的表面积和体积的有关计算 1 2 在处理有关体积问题时可以利用等体积变换法 当所给三棱锥的体积套用公式时某一量 面积或高 不易求出时 利用三棱锥的任一个面可作为三棱锥的底面 可以转换为底面面积和高都易求的方式来计算 3 补台成锥是常见的解决台体侧面积与体积的方法 由台体的定义知 在某种情况下 我们可以将台体补全成锥体来研究其体积 4 割补法 在求一些不规则的几何体的体积以及求两个几何体的体积之比时 经常要用到割补法 割补法是割法与补法的总称 补法是把不熟悉的 或复杂的 几何体延伸或补加成熟悉的 或简单的 几何体 把不完整的图形补成完整的图形 如长方体 正方体等 割法是把复杂的几何体切割成简单的几何体或体积易求的几何体 割与补是对立统一的 是一个问题的两个方面 4 球与其他几何体形成的组合体问题球与其他几何体组成的组合体通常在试题中以相切或相接的形式出现 关键在于仔细观察 分析 弄清相关元素的关系和数量关系 选准最佳角度作出截面 要使这个截面尽可能多地包含球 几何体的各种元素以及体现这些元素之间的关系 从而将空间问题转化成平面问题 5 线线关系空间两条直线的位置关系有且只有相交 平行 异面三种 两直线垂直有 相交垂直 与 异面垂直 两种情况 1 证明线线平行的方法 线线平行的定义 基本性质4 平行于同一条直线的两条直线互相平行 线面平行的性质定理 a a b a b 线面垂直的性质定理 a b a b 面面平行的性质定理 a b a b 2 证明线线垂直的方法 线线垂直的定义 两条直线所成的角是直角 在研究异面直线所成的角时 要通过平移把异面直线转化为相交直线 线面垂直的性质 a b a b 线面垂直的性质 a b a b 6 线面关系直线与平面之间的位置关系有且只有线在面内 相交 平行三种 1 证明直线与平面平行的方法 线面平行的定义 判定定理 a b a b a 平面与平面平行的性质 a a 2 证明直线与平面垂直的方法 线面垂直的定义 判定定理2 a b a b 面面平行的性质定理 a a 面面垂直的性质定理 l a a l a 7 面面关系两个平面之间的位置关系有且只有平行 相交两种 1 证明面面平行的方法 面面平行的定义 面面平行的判定定理 a b a b a b a 线面垂直的性质定理 垂直于同一条直线的两个平面平行 即a a 基本性质4的推广 平行于同一平面的两个平面平行 即 2 证明面面垂直的方法 面面垂直的定义 面面垂直的判定定理 a a 8 证明空间线面平行或垂直需注意的三点 1 由已知想性质 由求证想判定 2 适当添加辅助线 或面 是解题的常用方法之一 3 用定理时要先明确条件 再由定理得出相应结论 9 升降维 思想用降维的方法把空间问题转化为平面或直线问题 可以使问题得到解决 用升维的方法把平面或直线中的概念 定义或方法向空间推广 可以从已知探索未知 是 学会学习 的重要方法 平面图形的翻折问题的分析与解决 就是升维与降维思想方法的不断转化运用的过程 题型一三视图与直观图三视图和直观图是空间几何体的不同表现形式 空间几何体的三视图可以使我们很好地把握空间几何体的性质 由空间几何体可以画出它的三视图 同样 由三视图可以想象出空间几何体的形状 两者之间可以相互转化 例1将正方体如图 1 所示截去两个三棱锥 得到如图 2 所示的几何体 则该几何体的左视图为 解析还原正方体后 将d1 d a三点分别向正方体右侧面作垂线 d1a的射影为c1b 且为实线 b1c被遮挡应为虚线 答案b 跟踪演练1若某几何体的三视图如图所示 则这个几何体的直观图可以是 解析所给选项中 a c选项的主视图 俯视图不符合 d选项的左视图不符合 只有b选项符合 答案b 题型二几何体的表面积与体积几何体的表面积和体积的计算是现实生活中经常遇到的问题 如制作物体的下料问题 材料最省问题 相同材料容积最大问题 都涉及表面积和体积的计算 特别是特殊的柱 锥 台 在计算中要注意其中矩形 梯形及直角三角形等重要的平面图形的作用 对于圆柱 圆锥 圆台 要重视旋转轴所在轴截面 底面圆的作用 割补法 构造法是常用的技巧 例2如图所示 已知三棱柱abc a b c 侧面b bcc 的面积是s 点a 到侧面b bcc 的距离是a 求三棱柱abc a b c 的体积 解连接a b a c 如图所示 这样就把三棱柱分割成了两个棱锥 跟踪演练2某几何体的三视图如图所示 则该几何体的体积为 a 16 8 b 8 8 c 16 16 d 8 16 解析将三视图还原为原来的几何体 再利用体积公式求解 原几何体为组合体 上面是长方体 下面是圆柱的一半 如图所示 答案a 题型三空间中的平行关系在本章中 空间中的平行关系主要是指空间中线与线 线与面及面与面的平行 其中三种关系相互渗透 在解决线面 面面平行问题时 一般遵循从 低维 到 高维 的转化 即从 线线平行 到 线面平行 再到 面面平行 而利用性质定理时 其顺序相反 且 高维 的性质定理 就是 低维 的判定定理 特别注意 转化的方法总是由具体题目的条件决定 不能过于呆板僵化 要遵循规律而不局限于规律 如下图所示是平行关系相互转化的示意图 例3如图所示 四边形abcd是平行四边形 pb 平面abcd ma pb pb 2ma 在线段pb上是否存在一点f 使平面afc 平面 pmd 若存在 请确定点f的位置 若不存在 请说明理由 解当点f是pb的中点时 平面afc 平面pmd 证明如下 如图连接ac和bd交于点o 连接fo 四边形abcd是平行四边形 o是bd的中点 of pd 又of 平面pmd pd 平面pmd of 平面pmd pf綊ma 四边形afpm是平行四边形 af pm 又af 平面pmd pm 平面pmd af 平面pmd 又af of f af 平面afc of 平面afc 平面afc 平面pmd 跟踪演练3如图 ab是圆o的直径 pa垂直圆o所在的平面 c是圆o上的点 1 求证 bc 平面pac 证明由ab是圆o的直径 得ac bc 由pa 平面abc bc 平面abc 得pa bc 又pa ac a pa 平面pac ac 平面pac 所以bc 平面pac 2 设q为pa的中点 g为 aoc的重心 求证 qg 平面pbc 证明如图 连接og并延长交ac于点m 连接qm qo 由g为 aoc的重心 得m为ac中点 由q为pa中点 得qm pc 又o为ab中点 得om bc 因为qm mo m qm 平面qmo mo 平面qmo bc pc c bc 平面pbc pc 平面pbc 所以平面qmo 平面pbc 因为qg 平面qmo 所以qg 平面pbc 题型四空间中的垂直关系空间垂直关系的判定方法 1 判定线线垂直的方法 计算所成的角为90 异面直线所成的角 线面垂直的性质 若a b 则a b 2 判定线面垂直的方法 线面垂直定义 一般不易验证任意性 线面垂直的判定定理 a b a c b c b c m a 平行线垂直平面的传递性质 a b b a 面面垂直的性质 l a a l a 面面平行的性质 a a 面面垂直的性质 l l 3 面面垂直的判定方法 根据定义 面面垂直的判定定理 a a 例4如图 在 abc中 ac bc ab 四边形abed是边长为a的正方形 平面abed 平面abc 若g f分别是ec bd的中点 1 求证 gf 平面abc 证明如图 取be的中点h 连接hf gh 因为g f分别是ec和bd的中点 所以hg bc hf de 又因为四边形adeb为正方形 所以de ab 从而hf ab 所以hf 平面abc hg 平面abc 又因为gh hf h 所以平面hgf 平面abc 所以gf 平面abc 2 求证 平面ebc 平面acd 证明因为四边形adeb为正方形 所以eb ab 又因为平面abed 平面abc 所以be 平面abc 所以be ac 又因为ca2 cb2 ab2 所以ac bc 又因为be bc b 所以ac 平面bce 又因为ac 平面acd 从而平面ebc 平面acd 3 求几何体a debc的体积v 解取ab的中点n 连接cn 因为ac bc 又平面abed 平面abc 所以cn 平面abed 因为c abed是四棱锥 跟踪演练4如图 abc和 bcd所在平面互相垂直 且ab bc bd 2 abc dbc 120 e f g分别为ac dc ad的中点 1 求证 ef 平面bcg 解由已知得 abc dbc 因此ac dc 又g为ad中点 所以cg ad 同理bg ad 因此ad 平面bcg 又ef ad 所以ef 平面bcg 2 求三棱锥d bcg的体积 解在平面abc内 作ao cb 交cb延长线于o 由平面abc 平面bcd
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家具设计中的简约主义风格探讨试题及答案
- 提高全方位沟通能力的商务英语试题及答案
- 砖和砌块材料试题及答案
- 未来交通工具技术的考试试题及答案
- 新能源汽车的电池共享模式探索试题及答案
- 零售企业库存管理创新与供应链协同效率提升策略研究报告
- 如何通过创业扶持政策实现区域经济融合试题及答案
- 簡化难点2025年大学物理试题及答案
- 文化创意产品数字化设计在文创产业生态构建中的创新成果报告
- 构建良好的小学教育教学环境试题及答案
- 2025-2030中国振动监测系统行业市场发展趋势与前景展望战略研究报告
- 合肥高新美城物业有限公司招聘笔试题库2025
- 《词汇构建法:课件中的词根词缀解析》
- 2025年山东省济南市历城区中考一模物理试题(原卷版+解析版)
- Unit 7 第1课时 Welcome to the unit【基础深耕】七年级英语下册高效课堂(译林版2024)
- 2024年江苏省南京市中考物理试卷真题(含答案)
- DL-T 1476-2023 电力安全工器具预防性试验规程
- 监理工程师通知回复单11
- 立式加工中心操作指导书
- 禁毒学校青少年预防远离毒品教育模板课件
- 汽车4S店售后回访流程
评论
0/150
提交评论