




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
31.3概率的基本性质1理解、掌握事件间的包含关系和相等关系2掌握事件的交、并运算,理解互斥事件和对立事件的概念及关系3掌握概率的性质,并能用之解决有关问题1事件的关系(1)包含关系一般地,对于事件a与事件b,如果事件a_,则事件b一定_,这时称事件b包含事件a(或称事件a包含于事件b),记作_(或ab)不可能事件记作_,任何事件都包含不可能事件,即_类比集合,事件b包含事件a可用图表示,如图所示(2)相等关系一般地,若_,且_,那么称事件a与事件b相等,记作ab类比集合,事件a与事件b相等可用图表示,如图所示【做一做1】 同时抛掷两枚硬币,向上面都是正面为事件m,向上面至少有一枚是正面为事件n,则有()amn bmn cmn dmn2事件的运算(1)并事件若某事件c发生当且仅当事件a发生_事件b发生,则称此事件为事件a与事件b的_(或和事件),记作c_(或cab)类比集合的运算,事件a与事件b的并事件可用图表示,即如图所示的阴影部分(2)交事件若某事件c发生当且仅当事件a发生_事件b发生,则称此事件为事件a与事件b的交事件(或积事件),记作c_(或cab)类比集合,事件a与事件b的交事件可用图表示,即如图所示的阴影部分(3)互斥事件若a_b为_(ab),那么称事件a与事件b互斥,其含义是,事件a与事件b在任何一次试验中_发生事件a、事件b互斥是指事件a与事件b在一次试验中不会同时发生,即事件a与b互不包含,ab,ba如果事件a与事件b是互斥事件,那么a与b这两个事件同时发生的概率为0.与集合类比,可用图表示,如图所示(4)对立事件若ab为_事件,ab为_事件,那么称事件a与事件b互为对立事件,其含义是:事件a与事件b在任何一次试验中_一个发生对立事件的特征:一次试验中,不会同时发生,且必有一个事件发生对立事件是特殊的互斥事件,即对立事件是互斥事件,但互斥事件不一定是对立事件从集合角度看,事件a的对立事件,是全集中由事件a所含结果组成的集合的补集【做一做21】 抛掷一枚均匀的正方体骰子,事件p向上的点数是1,事件q向上的点数是3或4,m向上的点数是1或3,则pq_,mq_.【做一做22】 在30件产品中有28件一级品,2件二级品,从中任取3件,记“3件都是一级品”为事件a,则a的对立事件是_3概率的几个性质(1)范围任何事件的概率p(a)_.(2)必然事件的概率必然事件的概率p(a)_.(3)不可能事件的概率不可能事件的概率p(a)_.(4)概率加法公式如果事件a与事件b互斥,则有p(ab)_.事件a与事件b互斥,如果没有这一条件,加法公式将不能应用如果事件a1,a2,an彼此互斥,那么p(a1a2an)p(a1)p(a2)p(an),即彼此互斥事件和的概率等于其概率的和在求某些稍复杂的事件的概率时,可将其分解成一些概率较易求的彼此互斥的事件,化整为零,化难为易(5)对立事件的概率若事件a与事件b互为对立事件,那么ab为必然事件,则有p(ab)_1.公式使用的前提必须是对立事件,否则不能使用此公式当一事件的概率不易直接求,但其对立事件的概率易求时,可运用此公式,即使用间接法求概率【做一做31】 事件a与b是对立事件,且p(a)0.6,则p(b)等于()a0.4 b0.5 c0.6 d1【做一做32】 已知p(a)0.1,p(b)0.2,且a与b是互斥事件,则p(ab)_.答案:1(1)发生发生baa(2)ba ab【做一做1】 a事件n包含两种结果:向上面都是正面或向上面是一正一反则当m发生时,事件n一定发生则有mn.2(1)或并事件ab(2)且ab(3)不可能事件不会同时(4)不可能必然有且仅有【做一做21】 向上的点数是1或3或4向上的点数是3【做一做22】 至少有一件是二级品3(1)0,1(2)1(3)0(4)p(a)p(b) (5)p(a)p(b)【做一做31】 ap(b)1p(a)0.4.【做一做32】 0.3p(ab)p(a)p(b)0.10.20.3.1若事件a与事件b不互斥,则p(ab)p(a)p(b)不成立剖析:否定一个等式不成立,只需举出一个反例即可例如:抛掷一枚均匀的正方体骰子,向上的点数是1或2或3或4或5或6为事件a,且ab,则ab表示向上的点数是1或2或3或4或5或6,则p(a)p(b)p(ab)1,p(a)p(b)112,所以此时p(ab)p(a)p(b),即p(ab)p(a)p(b)不成立上例中p(ab)p(a)p(b)不成立的原因是事件a与事件b不是互斥事件其实对于任意事件a与b,有p(ab)p(a)p(b)p(ab)(不要求证明也不要求会用),那么当且仅当ab,即事件a与事件b是互斥事件时,p(ab)0,此时才有p(ab)p(a)p(b)成立2事件与集合之间的对应关系剖析:事件与集合之间的对应关系如下表:事件集合必然事件全集不可能事件()空集()事件b包含于事件a(ba)集合b包含于集合a(ba)事件b与事件a相等(ba)集合b与集合a相等(ba)事件b与事件a的并事件(ba)集合b与集合a的并集(ba)事件b与事件a的交事件(ba)集合b与集合a的交集(ba)事件b与事件a互斥(ba)集合b与集合a的交集为空集(ba)事件a的对立事件集合a的补集()题型一 判断互斥(对立事件)【例题1】 判断下列各事件是否是互斥事件,如果是互斥事件,那么是否是对立事件,并说明理由某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是女生反思:判断互斥事件和对立事件时,主要用定义来判断当两个事件不能同时发生时,这两个事件是互斥事件;当两个事件不能同时发生且必有一个发生时,这两个事件是对立事件题型二 概率加法公式的应用【例题2】 某射手在一次射击训练中,射中10环,9环,8环,7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手在一次射击中:(1)射中10环或7环的概率;(2)射中7环以下的概率分析:(1)利用互斥事件的概率加法公式解决;(2)转化为求对立事件的概率反思:求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥的事件的并(如本题(1),二是先求对立事件的概率,进而再求所求事件的概率(如本题(2)题型三 易错辨析【例题3】 抛掷一枚质地均匀的骰子,向上的一面出现1点、2点、3点、4点、5点、6点的概率都是,记事件a为“出现奇数”,事件b为“向上的点数不超过3”,求p(ab)错解:设向上的一面出现1点、2点、3点、4点、5点、6点分别记为事件c1,c2,c3,c4,c5,c6,则它们两两是互斥事件,且ac1c3c5,bc1c2c3.p(c1)p(c2)p(c3)p(c4)p(c5)p(c6).则p(a)p(c1c3c5)p(c1)p(c3)p(c5).p(b)p(c1c2c3)p(c1)p(c2)p(c3).故p(ab)p(a)p(b)1.错因分析:错解的原因在于忽视了“和事件”概率公式应用的前提条件,由于“朝上一面的数是奇数”与“朝上一面的数不超过3”这二者不是互斥事件,即出现1或3时,事件a,b同时发生,所以不能应用公式p(ab)p(a)p(b)求解答案:【例题1】 解:(1)是互斥事件理由是在所选的2名同学中,“恰有1名男生”实质是选出“1名男生和1名女生”,它与“恰有2名男生”不可能同时发生,所以是互斥事件不是对立事件理由是当选出的2名同学都是女生时,这两个事件都没有发生,所以不是对立事件(2)不是互斥事件理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,“至少有1名女生”包括“1名女生、1名男生”和“2名都是女生”这两种结果,当选出的是1名男生、1名女生时,它们同时发生这两个事件也不是对立事件理由是这两个事件能同时发生,所以不是对立事件(3)是互斥事件理由是“至少有1名男生”包括“1名男生、1名女生”和“2名都是男生”这两种结果,它与“全是女生”不可能同时发生是对立事件理由是这两个事件不能同时发生,且必有一个发生,所以是对立事件【例题2】 解:(1)设“射中10环”为事件a,“射中7环”为事件b,则“射中10环或7环”的事件为ab,事件a和事件b是互斥事件,故p(ab)p(a)p(b)0.210.280.49,所以射中10环或7环的概率为0.49.(2)设“射中7环以下”为事件c,“射中7环或8环或9环或10环”为事件d,则p(d)0.210.230.250.280.97.又事件c和事件d是对立事件,则p(c)1p(d)10.970.03.所以射中7环以下的概率是0.03.【例题3】 正解:记事件“出现1点”“出现2点”“出现3点”“出现5点”分别为a1,a2,a3,a4,由题意知这四个事件彼此互斥则aba1a2a3a4.故p(ab)p(a1a2a3a4)p(a1)p(a2)p(a3)p(a4).1从装有5个红球和3个白球的口袋内任取3个球,那么,互斥而不对立的事件是()a至少有一个红球与都是红球b至少有一个红球与都是白球c至少有一个红球与至少有一个白球d恰有一个红球与恰有两个红球2甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为()a60% b30% c10% d50%3从一箱产品中随机地抽取一件,设事件a抽到一等品,且已知p(a)0.65,则事件“抽到的不是一等品”的概率为()a0.7 b0.65 c0.35 d0.34一个射手进行一次射击,试判断下列事件哪些是互斥事件;哪些是对立事件事件a:命中环数大于7环;事件b:命中环数为10环;事件c:命中环数小于6环;事件d:命中环数为6,7,8,9,10环5某公务员去外地开会,他乘火车、轮船、汽车、飞机去的概率分别是0.3,0.2,0.1,0.4,求:(1)他乘火车或乘飞机去的概率;(2)他不乘轮船去的概率答案:1da项中,若取出的3个球是3个红球,则这两个事件同时发生,故它们不是互斥事件,所以a项不符合题意;b项中,这两个事件不能同时发生,且必有一个发生,则它们是互斥事件且是对立事件,所以b项不符合题意;c项中,若取出的3个球是1个红球2个白球时,它们同时发生,则它们不是互斥事件,所以c项不符合题意;d项中,这两个事件不能同时发生,是互斥事件,若取出的3个球都是红球,则它们都没有发生,故它们不是对立事件,所以d项符合题意2d甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%40%50%.3c设抽到的不是一等品为事件b,则a与b不能同时发生,且必有一个发生,则a与b是对立事件,故p(b)1p(a)10.650.35.4分析:要判断所给的事件是对立事件还是互斥事件,首先要将这两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两个事件,而对立事件是建立在互斥事件的基础上,两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年秋新北师大版数学一年级上册课件 我上学啦 我上学啦 1.可爱的校园
- 2024年秋新北师大版数学一年级上册教学课件 第二单元 5以内数加与减 综合实践 介绍我的教室
- 水表基本知识培训
- 混凝土施工后的初期强度检测方案
- 养猪场食品安全管理体系
- 糖尿病性骨病46课件
- 智算中心大规模数据计算与存储方案
- 水的各种形态课件
- 知识点3.2从心理层面感知色彩设计构成设计色彩45课件
- 水电工安全知识培训课件意义
- 医院食堂管理方案计划书
- 大客户营销管理策略对提高客户满意度和忠诚度的影响
- 《螺纹的种类和应用》课件
- 医学一等奖《白血病》课件
- 高空作业车专项应急预案
- 发现普洱茶的第一个医学实验报告
- 全自动血液细胞分析仪参数
- (完整版)过去完成时ppt
- 1输变电工程施工质量验收统一表式(线路工程)
- 养老护理员(技师、高级技师)知识考试复习题库(含答案)
- 学校安全“日管控、周排查、月总结”工作制度
评论
0/150
提交评论