【志鸿全优设计】高中数学 第二章2.2.1 综合法和分析法讲解与例题 新人教A版选修12.doc_第1页
【志鸿全优设计】高中数学 第二章2.2.1 综合法和分析法讲解与例题 新人教A版选修12.doc_第2页
【志鸿全优设计】高中数学 第二章2.2.1 综合法和分析法讲解与例题 新人教A版选修12.doc_第3页
【志鸿全优设计】高中数学 第二章2.2.1 综合法和分析法讲解与例题 新人教A版选修12.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2直接证明与间接证明2.2.1综合法和分析法问题导学一、用综合法证明问题活动与探究11已知a,b0,且ab1,求证:2如图,在四棱锥pabcd中,平面pad平面abcd,abad,bad60,e,f分别是ap,ad的中点求证:(1)直线ef平面pcd;(2)平面bef平面pad迁移与应用设ab0,求证:3a32b33a2b2ab2(1)综合法的证明步骤:分析条件,选择方向确定已知条件和结论间的联系,合理选择相关定义、定理等转化条件,组织过程将条件合理转化,书写出严密的证明过程(2)综合法的适用范围:定义明确的问题,如证明函数的单调性、奇偶性,立体几何中的证明,不等式的证明等问题已知条件明确,并且容易通过分析和应用条件能逐步逼近结论的题型二、用分析法证明问题活动与探究2当a,b满足什么条件时,成立迁移与应用当ab0时,求证:在分析法证明中,从结论出发的每一个步骤所得到的判断都是结论成立的充分条件,最后一步归结到一个明显成立的条件因此,从最后一步可以倒推回去,得到结论,但这个倒推过程可以省略三、综合法和分析法的综合应用活动与探究3求证:当x0时,sinxx迁移与应用已知a,b,c是不全相等的正数,且0x1求证:logxalogxblogxc实际解题时,用分析法思考问题,寻找解题途径,用综合法书写解题过程,或者联合使用分析法与综合法,即从“欲知”想“已知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,找到沟通已知条件和结论的途径答案:课前预习导学【预习导引】1综合法分析法2已知条件推理论证结论充分条件预习交流(1)解:an2n,2由等比数列的定义可知数列an为等比数列(2)证明:要证原不等式成立,只需证()2(2)2,即证22,由于上式显然成立,因此原不等式成立课堂合作探究【问题导学】活动与探究1思路分析:解答本题可由已知条件出发,结合基本不等式ab2(a,b0),即可得出结论证明:方法一:a,b0,且ab1,ab2,4当且仅当ab时,取“”号方法二:a,b是正数,ab20,20,(ab)()4又ab1,4当且仅当ab时,取“”号方法三:11224当且仅当ab时,取“”号2思路分析:(1)利用线线平行证明线面平行(2)利用面面垂直线面垂直面面垂直证明:(1)在pad中,因为e,f分别为ap,ad的中点,所以efpd又因为ef平面pcd,pd平面pcd,所以直线ef平面pcd(2)连结bd因为abad,bad60,所以abd为正三角形因为f是ad的中点,所以bfad因为平面pad平面abcd,bf平面abcd,平面pad平面abcdad,所以bf平面pad又因为bf平面bef,所以平面bef平面pad迁移与应用证明:3a32b3(3a2b2ab2)3a2(ab)2b2(ba)(3a22b2)(ab)因为ab0,所以ab0,3a22b20,从而(3a22b2)(ab)0,即3a32b33a2b2ab2活动与探究2解:要,只需,只需ab(ab)2,只需20,只需a0,b0,ab0,即a,b要满足的条件为ab0迁移与应用证明:要证(ab),只需证()22,即证a2b2(a2b22ab),即证a2b22ab因为a2b22ab对一切实数恒成立,所以(ab)成立综上所述,不等式得证活动与探究3思路分析:不等式的成立问题,可以转化为函数的最值问题来解决证明:要证x0时,sinxx,只需证x0时,sinxx0即可设f(x)sinxx,则即证x0时,f(x)f(0)即证x0时,f(x)的最大值小于或等于0(*)f(x)sinxx,f(x)cos x1,当x0时,f(x)0,f(x)在0,)上单调递减当x0时,f(x)maxf(0)0,(*)式成立原不等式成立迁移与应用证明:要证明logxlogxlogxlogxalogxblogxc,只需要证明logxlogx(abc),由已知0x1,只需证明abc由公式0,0,0又a,b,c是不全相等的正数,abc即abc成立logxlogxlogxlogxalogxblogxc成立当堂检测1设alg2lg5,bex(x0),则a与b的大小关系为()aab bab cab dab答案:a解析:alg2lg5lg101,而bexe01,故ab2下列表述:综合法是由因导果法;综合法是顺推法;分析法是执果索因法;分析法是间接证明法;分析法是逆推法其中正确的语句有()a2个 b3个 c4个 d5个答案:c解析:由分析法、综合法的定义知正确3已知函数f(x)满足:当x4时,f(x)2x,当x4时,f(x)f(x1),则f(2log23)()a11 b12 c24 d8答案:c解析:1log232,3log2324由已知得f(2log23)f(3log23)23244已知a,b是不相等的正数,且,则x,y的大小关系是_答案:xy解析:y2ab,xy5补充下面用分析法证明基本不等式的步骤:要证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论