




免费预览已结束,剩余11页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的基本性质及其应用一、利用函数的性质求函数的值域1、 一次函数y=kx+b(k0)的值域为r;2、 二次函数的值域:当a0时,y-/4a ,当a0时,y-/4a ;3、 反比例函数的值域:y0 ;4、 指数函数的值域为(0,+);对数函数的值域为r;5、 正弦、余弦函数的值域为-1,1(即有界性);正切余切函数的值域为r;6、 值域的相关求法:配方法;零点讨论法;函数图象法;利用求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法例题:求下列函数的值域1、利用求反函数的定义域求值域(或者分离变为反比例函数) 先求其反函数:f-1(x)=(3x+1)/(x-2) ,其中x2, 由其反函数的定义域,可得原函数的值域是yyr|y2 2、利用反比例函数的值域不等于0(或者反函数法)因此,原函数的值域为1/2,+) 4、利用分离变量法和换元法(然后用反函数法)(或者换元后分离)设法2xt,其中t0, 则原函数可化为y=(t+1)/(t-1) t=(y+1)/(y-1) y1或y-1 5、利用零点讨论法 由题意可知函数有3个零点-3,1,2, 当x9 当-3x1 时,y=-(x-1)+(x+3)-(x-2)=-x+6 5y9 当1x2 时,y=(x-1)+(x+3)-(x-2)=x+4 5y6 当x 2时,y=(x-1)+(x+3)+(x-2)=3x y6 综合前面四种情况可得,原函数的值域是5,+) 6、利用函数的有界性2、 函数的单调性及应用1、 a为函数f(x)定义域内某一区间,2、 单调性的判定:作差f(x1)-f(x2)判定;根据函数图象判定;3、 复合函数的单调性的判定:f(x),g(x) 同增、同减,f(g(x) 为增函数,f(x),g(x)一增、一减,f(g(x) 为减函数例1、设a0且a1,试求函数y=loga(4+3x-x2)的单调递增区间解析:由题意可得原函数的定义域是(,), 设u=4+3x-x2 ,其对称轴是 x=3/2 ,所以函数u=4+3x-x2 ,在区间(,3/2 上单调递增;在区间3/2 ,4)上单调递减 a时,y=logau 在其定义域内为增函数, 由 xuy ,得函数u=4+3x-x2 的单调递增区间(,3/2 , 即为函数y=loga(4+3x-x2) 的单调递增区间 a时,y=logau 在其定义域内为减函数,由 xuy ,得函数u=4+3x-x2 的单调递减区间3/2 ,4),即为函数y=loga(4+3x-x2)的单调递增区间例2、已知y=loga(2-ax) 在0,1上是x 的减函数,求a的取值范围。解析:由题意可知,a设ug(x)=2ax, 则g(x)在,上是减函数,且x=时,g(x)有最小值umin=2-a 又因为ug(x)2ax,所以, 只要 umin=2-a则可,得a又y=loga(2-ax) 在0,1上是x 减函数,ug(x)在,上是减函数, 即xuy ,所以y=logau是增函数,故a综上所述,得a2例3、已知f(x)的定义域为(,),且在其上为增函数,满足f(xy)=f(x)+f(y),f(2)=1 ,试解不等式f(x)+f(x-2)3 解析:此题的关键是求函数值所对应的自变量的值 由题意可得,f(4)=f(2)+f(2)=2 ,3=2+1=f(4)+f(2)=f(42)=f(8) 又f(x)+f(x-2)=f(x2-2x) 所以原不等式可化成f(x2-2x)f(8) 所以原不等式的解集为x|2x4三、函数的奇偶性及应用1、 函数f(x)的定义域为d,xd ,f(-x)=f(x) f(x)是偶函数;f(-x)=-f(x)是奇函数 2、 奇偶性的判定:作和差f(-x) f(x)=0 判定;作商f(x)/f(-x)= 1,f(x)0 判定3、 奇、偶函数的必要条件是:函数的定义域关于原点对称;4、 函数的图象关于原点对称 奇函数; 函数的图象关y轴对称 偶函数5、 函数既为奇函数又为偶函数 f(x)=0,且定义域关于原点对称;6、 复合函数的奇偶性:奇奇=奇,偶偶=偶,奇奇=偶,偶偶=偶,奇偶=奇例1.判断函数的奇偶性:解:当0时,0,于是当0时,0,于是综上可知, 是奇函数练习:1.证明,是奇函数.例2.为r上的偶函数,且当时,则当时,x(x+1) 若f(x)是奇函数呢?例3、已知函数是偶函数,求实数的值 答案练习:已知函数f(x)ax2bx3ab是偶函数,且其定义域为a1,2a,则a= b= 0 例4、已知函数,若,求的值。 答案:四、函数的周期性及应用1、设函数y=f(x)的定义域为d,xd,存在非0常数t,有f(x+t)=f(x) f(x)为周期函数,t为f(x)的一个周期;2、 正弦、余弦函数的最小正周期为2,函数y=asin(x+)和y=acos(x+)的最小正周期 是t = 2/| ;3、 正切、余切函数的最小正周期为,函数y=atan(x+)和y=acot(x+)的周期是 t=/| ; 4、 周期的求法:定义域法;公式法;最小公倍数法;利用函数的图象法; 5、 一般地,sinx 和cosx类函数加绝对值或平方后周期减半,tanx 和cotx类函数加绝对值或平方后周期不变(如:y=|cos2x| 的周期是/2 ,y=|cotx|的周期是例1、设f(x)是(-,+)上周期为2的奇函数,当0x1时,f(x)=x,求f(7.5) 解析:由题意可知,f(2+x) = f(x) f(7.5) f(8-0.5) f(-0.5) f(0.5) .例2.设是定义在区间上且以2为周期的函数,对,用表示区间已知当时,求在上的解析式.解:设时,有 是以2 为周期的函数,.例3设是定义在上以2为周期的周期函数,且是偶函数,在区间上,求时,的解析式.解:当,即,又是以2为周期的周期函数,于是当,即时,例4.已知的周期为4,且等式对任意均成立,判断函数的奇偶性.解:由的周期为4,得,由得,故为偶函数.分段函数例1求函数的最大值. 【解析】当时, , 当时, , 当时, , 综上有. 例2在同一平面直角坐标系中, 函数和的图象关于直线对称, 现将的图象沿轴向左平移2个单位, 再沿轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数的表达式为( ) 答案a.例3判断函数的奇偶性. 【解析】当时, , , 当时, , 当, , 因此, 对于任意都有, 所以为偶函数. 例4判断函数的单调性. 【解析】显然连续. 当时, 恒成立, 所以是单调递增函数, 当时, 恒成立, 也是单调递增函数, 所以在上是单调递增函数; 或画图易知在上是单调递增函数. 例5写出函数的单调减区间. 【解析】, 画图易知单调减区间为. 例6设函数, 若, 则得取值范围是( )答案d. 例7设函数, 则使得的自变量的取值范围为( )a b. c. d. 【解析】当时, , 所以, 当时, , 所以, 综上所述, 或, 故选a项. 抽象函数-“”有关问题一、利用函数性质,解的有关问题1.判断函数的奇偶性例1 已知,对一切实数、都成立,且, 求证为偶函数。证明:令=0, 则已知等式变为在中令=0则2=2 0=1为偶函数。2.求参数的取值范围例2:奇函数在定义域(-1,1)内递减,求满足的实数的取值范围。解:由得,为函数,又在(-1,1)内递减,3.解不定式 例3:如果=对任意的有,比较的大小解:对任意有=2为抛物线=的对称轴又其开口向上(2)最小,(1)=(3)在2,)上,为增函数(3)(4),(2)(1)0时,0f(x)1。(1)判断f(x)的单调性;(2)设,若,试确定a的取值范围。解:(1)在中,令,得,因为,所以。在中,令因为当时, 所以当时而 所以又当x=0时,所以,综上可知,对于任意,均有。设,则所以所以在r上为减函数。(2)由于函数y=f(x)在r上为减函数,所以即有 又,根据函数的单调性,有由,所以直线与圆面无公共点。因此有,解得。三、五类题型及解法(当练习使用)1、线性函数型抽象函数例1、已知函数f(x)对任意实数x,y,均有f(xy)f(x)f(y),且当x0时,f(x)0,f(1)2,求f(x)在区间2,1上的值域。分析:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。解:设,当,即,f(x)为增函数。在条件中,令yx,则,再令xy0,则f(0)2 f(0), f(0)0,故f(x)f(x),f(x)为奇函数,f(1)f(1)2,又f(2)2 f(1)4, f(x)的值域为4,2。例2、已知函数f(x)对任意,满足条件f(x)f(y)2 + f(xy),且当x0时,f(x)2,f(3)5,求不等式的解。 分析:由题设条件可猜测:f(x)是yx2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。 解:设,当,则, 即,f(x)为单调增函数。 , 又f(3)5,f(1)3。, 即,解得不等式的解为1 a 3。2、指数函数型抽象函数例3、设函数f(x)的定义域是(,),满足条件:存在,使得,对任何x和y,成立。求:(1)f(0); (2)对任意值x,判断f(x)值的正负。分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)1且f(x)0。解:(1)令y0代入,则,。若f(x)0,则对任意,有,这与题设矛盾,f(x)0,f(0)1。(2)令yx0,则,又由(1)知f(x)0,f(2x)0,即f(x)0,故对任意x,f(x)0恒成立。例4、是否存在函数f(x),使下列三个条件:f(x)0,x n;f(2)4。同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。分析:由题设可猜想存在,又由f(2)4可得a2故猜测存在函数,用数学归纳法证明如下:(1)x1时,又x n时,f(x)0,结论正确。(2)假设时有,则xk1时,xk1时,结论正确。综上所述,x为一切自然数时。3、对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数。例5、设f(x)是定义在(0,)上的单调增函数,满足,求:(1)f(1);(2)若f(x)f(x8)2,求x的取值范围。分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)0,f(9)2。解:(1),f(1)0。(2),从而有f(x)f(x8)f(9),即,f(x)是(0,)上的增函数,故,解之得:8x9。例6、设函数yf(x)的反函数是yg(x)。如果f(ab)f(a)f(b),那么g(ab)g(a)g(b)是否正确,试说明理由。分析: 由题设条件可猜测yf(x)是对数函数的抽象函数,又yf(x)的反函数是yg(x),yg(x)必为指数函数的抽象函数,于是猜想g(ab)g(a)g(b)正确。解:设f(a)m,f(b)n,由于g(x)是f(x)的反函数,g(m)a,g(n)b,从而,g(m)g(n)g(mn),以a、b分别代替上式中的m、n即得g(ab)g(a)g(b)。4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数。例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:当是定义域中的数时,有;f(a)1(a0,a是定义域中的一个数);当0x2a时,f(x)0。试问:(1)f(x)的奇偶性如何?说明理由。(2)在(0,4a)上,f(x)的单调性如何?说明理由。分析: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。解:(1)f(x)的定义域关于原点对称,且是定义域中的数时有,在定义域中。,f(x)是奇函数。(2)设0x1x22a,则0x2x12a,在(0,2a)上f(x)0,f(x1),f(x2),f(x2x1)均小于零,进而知中的, 于是f(x1) f(x2),在(0,2a)上f(x)是增函数。又,f(a)1,f(2a)0,设2ax4a,则0x2a2a,于是f(x)0,即在(2a,4a)上f(x)0。设2ax1x24a,则0x2x12a,从而知f(x1),f(x2)均大于零。f(x2x1)0,即f(x1)f(x2),即f(x)在(2a,4a)上也是增函数。 综上所述,f(x)在(0,4a)上是增函数。5、幂函数型抽象函数幂函数型抽象
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 时间的脚印课件王晶
- 教务主任期中质量分析
- 护理常规培训内容
- 时钟造型基础知识培训课件
- 二零二五版房屋地基下沉修复赔偿合同
- 2025版出轨离婚赔偿金协议书(含法律咨询与执行)
- 二零二五年度房地产开发项目贷款合同范本正规范本
- 旭东化学课件获取
- 二零二五年度动产抵押消费贷款合同编写指南
- 高三试卷:四川省雅安市2024-2025学年高三上学期11月零诊试题数学答案
- 感冒急性鼻炎护理
- 2024年村秘书述职报告
- 私房摄影保密协议书
- 天麻买卖合同协议
- 展览会会务服务投标方案(技术方案)
- 上门灭蚊合同协议
- 2025届四川省泸州市高三下学期第三次教学质量诊断性考试英语试题(原卷版+解析版)
- 缓刑解除矫正个人的总结(范文模板)
- 2025年中医经典知识竞赛考试题库及答案
- 胸痹心痛护理个案
- 船闸水工建筑物设计规范
评论
0/150
提交评论