



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省肥城市湖屯镇初级中学七年级数学下册3.1一元二次方程单元教材分析 新人教版教材内容 1本单元教学的主要内容 一元二次方程概念;解一元二次方程的方法;一元二次方程应用题2本单元在教材中的地位与作用一元二次方程是在学习一元一次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程,也是初中数学的重点.教学重点 1一元二次方程及其它有关的概念 2用配方法、公式法、因式分解法降次解一元二次方程 3利用实际问题建立一元二次方程的数学模型,并解决这个问题教学难点 1一元二次方程配方法解题 2用公式法解一元二次方程时的讨论 3一元二次方程根的判别式. 4.一元二次方程根与系数的关系5.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别教材地位及知识间内在联系一元二次方程是初中数学的基础内容,在初中数学中占有重要地位,学习和运用一元二次方程不仅综合运用了以前所学的多方面的知识,同时也为进一步的学习和应用打好基础。所以,本章知识的学习在整个代数中起承前启后的作用。它既是对已学过的知识实数、整式、分式和一次方程、方程组、不等式知识的巩固和深化,又是为今后学习二次函数、二次不等式等内容奠定了基础。学情分析初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一特点,一方面要运用直观生动的生活实例,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。促进学生个性发展。从认知基础上看,学生已经学习了一元一次方程、平方根、因式分解等知识,为本章的学习奠定了基础。学生在利用方程解决实际问题的过程中,会发现仅用这些知识是不能够解决的,因此迫切的需要一元二次方程这个解决问题的工具。学生学习时应注意的地方1一元二次方程 教学的重点是对方程的一般形式的认识和对方程解的理解并为后续通过转化求方程解奠定思想基础。 2一元二次方程的解法本节是本章的核心内容,主要是一元二次方程的各种解法。其中的一元二次方程的配方法和应用一元二次方程知识理解应用问题是重点,而这两个重点又是教学过程中的难点。一元二次方程的解法,尤其是公式法是学好本章的关键。因此,本节又是全章的重点,是学好本章的基础。 关于一元二次方程根与系数的关系,实际上,求根公式就体现了根与系数的关系,由于课程标准中没有涉及,但这部分内容对于今后的学习是很重要的,在教学中可以作为探索性学习的内容,让学生自己进行探索并得出结论。 3一元二次方程的应用 列方程解应用问题,前面一元一次方程的应用已学习过相关的知识,但是列一元二次方程解应用题仍然是难点,其原因是数量关系比较复杂且隐蔽;应用题所反映的实际背景比较复杂而学生又不太熟悉;所列方程也逐步复杂。主观上学生一开始受算术解法思维的定势影响,缺乏广泛的社会经济生产和生活以及相关学科方面的知识,理解文字语言和数学语言等方面的能力较差。其中方程应用题求解,大体上都是这样六个步骤:审题,理解题意,明确题中涉及几个量,有几个是已知量,有几个是未知量,它们之间有什么关系等等;设元,根据题目要求,选择合适的未知数,又分为直接设元法、间接设元法。同时还要考虑设几个未知数为宜;列式,分析题目中量与量的关系,关键是找出题目中的相等关系,这时,要注意挖掘题目中的那些隐蔽的相等关系,有时,又要辅之使用图示法、列表法等一些直观手段;求解;检验,既要检验得到的解是否符合原方程或原方程组,又要检验所得的解对实际问题是否有意义;作答,写出正确合理的答案。在教学中可以结合问题解决的策略,让学生主动参与,自主建构和合作学习,体会数学建模的基本思想与方法。教学目标1知识与技能了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题2过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型根据数学模型恰如其分地给出一元二次方程的概念(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等(3)通过掌握缺一次项的一元二次方程的解法直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程(4)通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2-4ac0(5)通过实例探索一元二次方程的根与系数的关系.(6)通过复习八年级上册整式的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它(7)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题3情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题本章体现的数学思想方法1方程的思想 方程本身就提供了一种重要的数学思想方法,这一点在一元二次方程中体现的更为充分。学习方程不仅为进一步学习其他知识打下基础,不仅可用于解决一些实际问题,而且在更广泛的意义上讲,通过方程可以沟通已知与未知之间的联系,从而由解方程就可以使问题得以解决,通常称之为方程思想。方程思想作为一种数学思想,在数学发展史上有重要作用,对求解数学问题来说也有重要的意义。2公式解法 一元二次方程的公式解法在数学思想方法上有重要意义。首先,公式法是人们所知的多次方程的第一种公式(根式)解,它为以后进行公式解的研究开辟了道路,并且是引起近似代数的起源问题之一,在数学的学习中也有重要意义;其次,公式法解体现了数学中的算子的思想,将数学问题进行抽象化、符号化、程序化,这是数学发展的重要的途径。3分类讨论的数学思想 一元二次方程求根公式中,涉及开方问题,即对 要实施开平方,而前面已经学过负数没有平方根。因此 的状态就决定了一元二次方程根的状态。必须对 的符号进行讨论。分类讨论的数学思想是一种极为重要的数学思想方法,教材中对= 的三种分类讨论隐含在课堂教学之中,通过“想一想”让学生自然地得到结论,降低由于数学思想上的要求所带来的学习上的难度,这是一种合理的处理方法。实际上,判别式的讨论是不解方程而对方程的根进行定性研究的重要指标。在研究二次函数的图象和性质等方面有重要意义,在研究二次曲线的问题时有重要地位。判别式实质上是利用方程的系数研究方程的性质,是一种以局部研究探求具体性质的方法。找一种关键性的数量关系去定性地研究一类对象,也是一种常见的数学思想方法。4转化(化归)的数学思想 在本章中更突出地表示出“转化”的思想方法。如利用因式分解法解一元二次方程就是将一元二次方程转化为两个一元一次方程。严格地说,转化的思想是数学中认识和掌握新知识的重要途径,掌握这种方法,可以提高学生的数学能力,拓展学生数学知识。如换元法就是一种很重要的转化思想,这在本章也有不少的体现。一元二次方程 本节包括一元二次方程的概念、因式分解法解一元二次方程,这一单元是本章的基础,教材两个问题中引入了一元二次方程的概念,一个问题是学生所熟悉的正方形和长方形的面积,另一个问题是从报纸上公布的统计数据,教学的重点是对方程的一般形式的认识和对方程解的理解,在此基础上,引入用因式分解法求一元二次方程解的方法,将这种解安排在此处,其目的是为了加强学生对学习方程目的的理解,并为后续通过转化求方程解奠定思想基础。 2一元二次方程的解法本节是本章的核心内容,主要是一元二次方程的各种解法。其中的一元二次方程的配方法和应用一元二次方程知识理解应用问题是重点,而这两个重点又是教学过程中的难点。一元二次方程的解法,尤其是公式法是学好本章的关键。因此,本节又是全章的重点,是学好本章的基础。 一元二次方程的解法,课本介绍了四种,即直接开平方法、配方法、公式法及因式分解法。 直接开平方法适用于 (b0)模式的方程。实际上,给出的一般方程只要存在实根,就可以用配方法转化为 的形式。例如,课本中将方程 转化为 ,因此配方法是直接开方法的延伸,而直接开平方法是配方法的基础。 在配方法解一元二次方程的基础上,很自然地推出一元二次方程的求根公式,实际上就是对一般形式 (a0)的一元二次方程实施配方法的结果。 对于三种解法,公式法可以是一种“万能”方法,只要= 0,将系数a,b,c代入公式即可求解。在教学中注意一元二次方程中 的a0的条件。在配方时应强调方程两边同时加上“一次项系数之半的平方”或在左端加上“一次项系数之半的平方”再减去“一次项系数之半的平方”,实质上是方程的一种同解变形,这是必须反复训练方可达到学生熟练进行配方的目的,它也是推导求根公式的基础。 对= 的讨论,首先要渗透分类讨论的思想,另外,对= =0的情况,一定要强调有两个相等的实根:这与方程根的理论一致,学生开始会认识只有一根,要反复强调,以纠正这种不正确的或说是不严密的结论。对= 0的情况,不能说成方程无解,而应强调方程无实数根或在实数范围内无解,强调数域是为今后在高中讨论有复根的情况埋下伏笔。理论上的证明见教师用书。 关于一元二次方程根与系数的关系,实际上,求根公式就体现了根与系数的关系,由于课程标准中没有涉及,但这部分内容对于今后的学习是很重要的,在教学中可以作为探索性学习的内容,让学生自己进行探索并得出结论。 3一元二次方程的应用 列方程解应用问题,前面一元一次方程的应用已学习过相关的知识,但是列一元二次方程解应用题仍然是难点,其原因是数量关系比较复杂且隐蔽;应用题所反映的实际背景比较复杂而学生又不太熟悉;所列方程也逐步复杂。主观上学生一开始受算术解法思维的定势影响,缺乏广泛的社会经济生产和生活以及相关学科方面的知识,理解文字语言和数学语言等方面的能力较差。 对于求解应用题,若从思想方法角度来看,列方程解应用题属于数学模型法,其中方程应用题求解,大体上都是这样六个步骤:审题,理解题意,明确题中涉及几个量,有几个是已知量,有几个是未知量,它们之间有什么关系等等;设元,根据
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 六一古风班级活动方案
- 六一园区活动方案
- 六一布展活动方案
- 六一幼儿园走秀活动方案
- 六一惠民活动方案
- 六一活动包饺子活动方案
- 六一活动小学活动方案
- 六一活动画t恤活动方案
- 六一活动野餐活动方案
- 六一游戏室内活动方案
- GB/T 20021-2005帆布芯耐热输送带
- 成功八步课件
- 模具保养记录表
- 形象店加盟管理方案
- 1.《郑人买履》课件PPT
- T∕ZS 0128-2020 既有建筑结构安全智慧监测技术规程
- 发电机定子绕组泄漏电流和直流耐压试验作业指导书
- 甘肃省生态功能区划
- DB22∕T 1073-2011 绿色淫羊藿生产技术规程
- 教练技术LP三阶段教练手册
- 国家开放大学《人文英语3》章节测试参考答案
评论
0/150
提交评论