




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章 平面向量章末复习提升学案 新人教b版必修4 1平面向量的基本概念主要应掌握向量的概念、零向量、单位向量、平行向量、相等向量、共线向量等概念,这些概念是考试的热点,一般都是以选择题或填空题出现,尤其是单位向量常与向量的平行与垂直的坐标形式结合考查,一些学生往往只求出一个而遗漏另一个2向量的线性运算主要应掌握向量加法的三角形法则与平行四边形法则,甚至推广到向量加法的多边形法则;掌握向量减法的三角形法则;数乘向量运算的性质和法则及运算律同时要灵活运用这些知识解决三点共线、两线段相等及两直线平行等问题3向量的坐标运算主要应掌握向量坐标运算的法则、公式进行向量加、减与数乘运算;能用向量共线的坐标表示证明两向量平行或证明三点共线;能用平面向量基本定理和基底表示平面内任意一个向量4平面向量的数量积平面向量的数量积是向量的核心内容,主要应掌握向量的数量积的定义、法则和公式进行相关运算,特别是向量的模、夹角、平行与垂直等运算;能用向量数量积的坐标形式求向量的模、夹角,证明向量平行或垂直,能解答有关综合问题5平面向量的应用一是要掌握平面几何中的向量方法,能用向量证明一些平面几何问题、能用向量求解一些解析几何问题;二是能用向量解决一些物理问题,如力、位移、速度等.题型一向量的共线问题运用向量平行(共线)证明常用的结论有:(1)向量a、b(a0)共线存在唯一实数,使ba;(2)向量a(x1,y1),b(x2,y2)共线x1y2x2y10;(3)向量a与b共线|ab|a|b|;(4)向量a与b共线存在不全为零的实数1,2,使1a2b0.判断两向量所在的直线共线时,除满足定理的要求外,还应说明此两直线有公共点例1设坐标平面上有三点a、b、c,i、j分别是坐标平面上x轴,y轴正方向的单位向量,若向量i2j,imj,那么是否存在实数m,使a、b、c三点共线解方法一假设满足条件的m存在,由a、b、c三点共线,即,存在实数,使,i2j(imj),m2,当m2时,a、b、c三点共线方法二假设满足条件的m存在,根据题意可知:i(1,0),j(0,1),(1,0)2(0,1)(1,2),(1,0)m(0,1)(1,m),由a、b、c三点共线,即,故1m1(2)0,解得m2,当m2时,a、b、c三点共线跟踪演练1如图所示,在abc中,p是bn上的一点,若m,则实数m的值为_答案解析设,则m(m1).与共线,(m1)0,m.题型二向量的夹角及垂直问题1求两个向量的夹角主要利用两个公式:(1)cos ,求解的前提是:求出这两个向量的数量积和模(2)cos ,求解的前提是:可以求出两个向量的坐标2解决垂直问题,其关键在于将问题转化为它们的数量积为零,与求夹角一样,若向量能用坐标表示,将它转化为“x1x2y1y20”较为简单3用向量方法解决平面几何中的夹角与垂直问题的关键在于:选用适当向量为基底,把所要研究的问题转化为两向量的夹角与垂直问题,再利用向量知识求角例2已知三个点a(2,1),b(3,2),d(1,4)(1)求证:abad;(2)若四边形abcd为矩形,求点c的坐标以及矩形abcd两对角线所夹锐角的余弦值(1)证明a(2,1),b(3,2),d(1,4),(1,1),(3,3)1(3)130,即abad.(2)解,四边形abcd为矩形,.设c点坐标为(x,y),则(x1,y4),解得点c坐标为(0,5)从而(2,4),(4,2),且|2,|2,8816,设与的夹角为,则cos .矩形abcd的两条对角线所夹锐角的余弦值为.跟踪演练2已知向量(2,0),(2,2),(cos ,sin ),则与夹角的范围是()a. b.c. d.答案c解析建立如图所示的直角坐标系(2,2),(2,0),(cos ,sin ),点a的轨迹是以c(2,2)为圆心,为半径的圆过原点o作此圆的切线,切点分别为m,n,连接cm、cn,如图所示,则向量与的夹角范围是mob,nob.|2,|,知comcon,但cob.mob,nob,故,.题型三向量的长度(模)与距离的问题向量的模不仅是研究向量的一个重要量,而且是利用向量的方法解决几何问题的一个交汇点一般地,求向量的模主要利用公式|a|2a2,将它转化为向量的数量积问题,再利用数量积的运算律和运算性质进行展开、合并,使问题得以解决,或利用公式|a|,将它转化为实数问题,使问题得以解决例3设|a|b|1,|3a2b|3,求|3ab|的值解方法一|3a2b|3,9a212ab4b29.又|a|b|1,ab.|3ab|2(3ab)29a26abb296112.|3ab|2.方法二设a(x1,y1),b(x2,y2)|a|b|1,xyxy1.3a2b(3x12x2,3y12y2),|3a2b|3.x1x2y1y2.|3ab| 2.跟踪演练3设0|a|2,f(x)cos2x|a|sin x|b|的最大值为0,最小值为4,且a与b的夹角为45,求|ab|.解f(x)1sin2 x|a|sin x|b|2|b|1.0|a|2,当sin x时,|b|10;当sin x1时,|a|b|4.由得|ab|2(ab)2a22abb222222cos 452284,|ab|2.1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汽车行业供应链风险管理与供应链风险管理培训课程设计报告
- 2025年度楼板安装与售后维护合同
- 2025版暖通工程节能减排技术合作合同
- 2025房地产收购合同-城市综合体商业收购协议
- 2025版幕墙施工劳务分包合同范本(建筑节能减排方案)
- 2025年高科技园区建设招标投标保函范本
- 2025年度男方过错离婚协议书范本及婚姻过错赔偿履行协议
- 2025年度企业顶岗实习就业保障协议
- 2025年度保安服务与城市安全防范体系建设合同
- 2025版企业外部培训与内部培训资源共享合作协议
- 第五讲铸牢中华民族共同体意识-2024年形势与政策
- 软件系统技术报告模板
- 抖音员工号认证在职证明模板(7篇)
- 04S520埋地塑料排水管道施工标准图集
- 变电站工程施工三措
- 2023年苏教版小学四年级上册综合实践活动教案全册
- 2024年首届全国“红旗杯”班组长大赛考试题库1400题(含答案)
- 湖南省建筑工程定额
- 分布式光伏经济评价规范
- 电梯基础知识课件
- 教导式面谈总公课件
评论
0/150
提交评论