




免费预览已结束,剩余22页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【专项冲击波】2013年高考数学 讲练测系列 专题09 概率统计(理)(教师版)【考纲解读】1. 了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别;了解两个互斥事件的概率加法公式2理解古典概型及其概率计算公式;会计算一些随机事件所含的基本事件数及事件发生的概率3.了解随机数的意义,能运用模拟方法估计概率;了解几何概型的意义4.理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性5.理解超几何分布及其导出过程,并能进行简单的应用6.了解条件概率和两个事件相互独立的概念,理解次独立重复试验的模型及二项分布,并能解决一些简单的实际问题7.理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题8.利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义9.了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题10.了解独立性检验(只要求22列联表)的基本思想、方法及其简单应用11.了解假设检验的基本思想、方法及其简单应用;了解回归的基本思想、方法及其简单应用【考点预测】本章知识的高考命题热点有以下两个方面:1.概率统计是历年高考的热点内容之一,考查方式多样,选择题、填空题、解答题中都可能出现,数量各1道,难度中等,主要考查概率与统计的基本概念、公式以及基本技能、方法,以及分析问题、解决问题的能力,通常以实际问题的应用为载体,以排列和概率统计知识为工具,考察概率的计算、随机变量的概率分布、均值、方差、抽样方法、样本频率估计等内容。二项式定理主要以选择填空的形式出现,难度中等。随机变量的分布列、期望、方差相结合的试题2.样本抽取识别与计算也常在选择、填空题中出现,条件概率、随机变量与服从几何分布及服从超几何分布的概率计算问题;独立性检验等新课标中新增内容页会有不同程度的考察。3.预计在2013年高考中,概率统计部分的试题仍会以实际问题为背景,概率与统计相结合命题.【要点梳理】1.概率(1)主要包括古典概型、几何概型、互斥条件的概率、条件概率、相互独立事件同时发生的概率、n次独立重复试验等。(2)互斥事件的概率加法公式:,若a与b为对立事件,则.(3)求古典概型的概率的基本步骤:算出所有基本事件的个数;求出事件a包含的基本事件个数;代入公式,求出;(4)理解几何概型与古典概型的区别,几何概型的概率是几何度量之比,主要使用面积之比与长度之比.2.抽样方法抽样方法主要有简单随机抽样、系统抽样。分层抽样三种,正确区分这三种抽样.3.频率分布直方图频率分布直方图中每一个小矩形的面积等于数据落在相应区间上的频率,所有小矩形的面积之和等于1.4.平均数和方差:方差越小,说明数据越稳定。5.两个变量间的相关关系:能做出散点图,了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程。6.离散型随机变量的分布列熟练掌握几个常见分布:1、两点分布;2、超几何分布;3、二项分布7. 离散型随机变量的均值和方差:是当前高考的热点内容。8.正态分布是一种常见分布。考点一 概率例1. (2012年高考广东卷理科7)从个位数与十位数之和为奇数的两位数种任取一个,其个位数为0的概率是( )a. b. c. d. 【答案】d【解析】从个位数与十位数之和为奇数的两位数种任取一个,所有的取法共有45种, 其个位数为0的数有10,30,50,70,90,共5个数,所以其个位数为0的概率是,故选d.【名师点睛】本题考查古典概型的概率问题,求解此类问题要求能够准确的确定基本事件空间的基本事件个数,和所求事件所含的基本事件个数.【备考提示】概率部分主要包括古典概型、几何概型、互斥条件的概率、条件概率、相互独立事件同时发生的概率等,这些都是高考考查的重点内容,必须熟练掌握.练习1: (2012年高考北京卷理科2)设不等式组,表示平面区域为d,在区域d内随机取一个点,则此点到坐标原点的距离大于2的概率是( )(a) (b) (c) (d)【答案】d【解析】题目中表示的区域如图正方形所示,而动点d可以存在的位置为正方形面积减去四分之一圆的面积部分,因此,故选d。考点二 统计例2. (2012年高考山东卷理科4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间1,450的人做问卷a,编号落入区间451,750的人做问卷b,其余的人做问卷c.则抽到的人中,做问卷b的人数为( )(a)7 (b) 9 (c) 10 (d)15【名师点睛】本题考查统计中抽样方法中的系统抽样.【备考提示】统计知识是高考的重点内容之一,特别是新课标新增内容,它们是与大学知识的衔接,所以必须熟练.练习2:(2012年高考北京卷理科8)某棵果树前n前的总产量s与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为( )a.5 b.7 c.9 d.11【答案】c【解析】由图可知6,7,8,9这几年增长最快,超过平均值,所以应该加入,因此选c.考点三 随机变量的分布列与期望例3. (2012年高考江苏卷22)(本小题满分10分)设为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,;当两条棱平行时,的值为两条棱之间的距离;当两条棱异面时, (1)求概率; (2)求的分布列,并求其数学期望 随机变量的分布列是:01 其数学期望. 【名师点睛】本题主要考查概率统计知识:离散型随机变量的分布列、数学期望的求解、随机事件的基本运算本题属于基础题目,难度中等偏上.考查离散型随机变量的分布列和期望的求解,在列分布列时,要注意的取值情况,不要遗漏的取值情况本小题主要考查学生应用意识以及运用概率知识分析问题、解决实际问题的能力.【备考提示】随机变量的分布列与期望是高考的热点内容,年年必考,在复习时,熟练这类问题的解法。练习3:(2012年高考广东卷理科17)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:40,5050,6060,7070,8080,9090,100。(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的数学期望.【解析】(1)(2)成绩不低于分的学生有人,其中成绩在分以上(含分)的人数为, 随机变量可取,所以随机变量的分布列为012p所以的数学期望为 .【考题回放】1. (2012年高考福建卷理科6)如图所示,在边长为1的正方形中任取一点,则点恰好取自阴影部分的概率为( )a b c d【答案】c【解析】,,所以.2. (2012年高考陕西卷理科10)右图是用模拟方法估计圆周率值的程序框图,表示估计结果,则图中空白框内应填入( )(a) (b) (c) (d) 【答案】d【解析】m表示落入扇形的点的个数,1000表示落入正方形的点的个数,则点落入扇形的概率为,由几何概型知,点落入扇形的概率为,则,故选d.3(2012年高考上海卷理科17)设,随机变量取值的概率均为,随机变量取值的概率也均为,若记分别为的方差,则( )a b c d与的大小关系与的取值有关4. (2012年高考江西卷理科9)样本()的平均数为,样本()的平均数为,若样本(,)的平均数,其中,则n,m的大小关系为( )a b c d不能确定故.因为,所以.所以.即.5. (2012年高考安徽卷理科5)甲、乙两人在一次射击比赛中各射靶5次,两人成绩的条形统计图如图所示,则( ) 甲的成绩的平均数小于乙的成绩的平均数 甲的成绩的中位数等于乙的成绩的中位数 甲的成绩的方差小于乙的成绩的方差 甲的成绩的极差小于乙的成绩的极差【答案】 【解析】 甲的成绩的方差为,乙的成绩的方差为.6.(北京市昌平区2013年1月高三上学期期末理科)设不等式组 表示的平面区域为在区域内随机取一个点,则此点到直线的距离大于2的概率是( )a. b. c. d. 7.(2011年高考辽宁卷理科5)从1.2.3.4.5中任取2各不同的数,事件a=“取到的2个数之和为偶数”,事件b=“取到的2个数均为偶数”,则p(ba)= ( )(a) (b) (c) (d)【答案】b【解析】由题意,p(a)=, p(ab)=,故p(ba)=.8.(2012年高考天津卷理科9)某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调査,应从小学中抽取 所学校,中学中抽取 所学校.【答案】18,9【解析】分层抽样也叫按比例抽样,由题知学校总数为250所,所以应从小学中抽取,中学中抽取.9.(2012年高考重庆卷理科15)某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课个1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 (用数字作答).10. (2012年高考湖南卷理科15)函数f(x)=sin ()的导函数的部分图像如图4所示,其中,p为图像与y轴的交点,a,c为图像与x轴的两个交点,b为图像的最低点.(1)若,点p的坐标为(0,),则 ;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在abc内的概率为 .【答案】(1)3;(2)【解析】(1),当,点p的坐标为(0,)时;(2)由图知,设的横坐标分别为.设曲线段与x轴所围成的区域的面积为则,由几何概型知该点在abc内的概率为.11. (2011年高考江苏卷5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是 .12. (2011年高考山东卷文科13)某高校甲、乙、丙、丁四个专业分别有150、150、400、300名学生,为了解学生的就业倾向,用分层抽样的方法从该校这四个专业共抽取40名学生进行调查,应在丙专业抽取的学生人数为 .【答案】16【解析】由题意知,抽取比例为3:3:8:6,所以应在丙专业抽取的学生人数为40=16.13.(2011年高考江苏卷6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差.【答案】3.2【解析】考查方差的计算,可以先把这组数都减去6,再求方差,.14. (2011年高考辽宁卷理科14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元.【答案】 0.254【解析】 由线性回归直线斜率的几何意义可知,家庭年收入每增加1万元,年饮食支出平均增加0.254万元. 15.(山东省济南外国语学校2013届高三上学期期中考试理科)(本小题满分12分) 以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以x表示。()如果x=8,求乙组同学植树棵树的平均数;()如果x=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树y的分布列和数学期望.所以随机变量y的分布列为:y1718192021pey=17p(y=17)+18p(y=18)+19p(y=19)+20p(y=20)+21p(y=21)=17+18+19+20+21=19.12分16. (2012年高考广东卷理科17)(本小题满分13分)某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:40,5050,6060,7070,8080,9090,100。(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为,求的数学期望.【解析】(1)(2)成绩不低于分的学生有人,其中成绩在分以上(含分)的人数为, 随机变量可取,所以随机变量的分布列为012p所以的数学期望为 .17(2012年高考北京卷理科17)(本小题共13分)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030其他垃圾202060()试估计厨余垃圾投放正确的概率;()试估计生活垃圾投放错误额概率;()假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为其中a0,=600。当数据的方差最大时,写出的值(结论不要求证明),并求此时的值。(注:,其中为数据的平均数)【解析】(1)由题意可知:。(2)由题意可知:。(3)由题意可知:,因此有当,时,有.【高考冲策演练】一、选择题:1. (北京市丰台区2013年1月高三上学期期末)从装有2个红球和2个黑球的口袋内任取2个球,则恰有一个红球的概率是 ( )(a) (b) (c) (d) 【答案】c【解析】从袋中任取2个球,恰有一个红球的概率,选c.2.(2012年高考湖南卷理科4)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )a.y与x具有正的线性相关关系b.回归直线过样本点的中心(,)c.若该大学某女生身高增加1cm,则其体重约增加0.85kgd.若该大学某女生身高为170cm,则可断定其体重比为58.79kg3. (2012年高考陕西卷理科6)从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为,中位数分别为,则( )(a) ,(b) ,(c) ,(d) ,【答案】b【解析】经计算得:甲=21.5625,乙=28.5625,甲=20,乙=29,故选b.4.(2012年高考辽宁卷理科10)在长为12cm的线段ab上任取一点c.现作一矩形,领边长分别等于线段ac,cb的长,则该矩形面积小于32cm2的概率为( )(a) (b) (c) (d) 【答案】c【解析】设线段ac的长为cm,则线段cb的长为()cm,那么矩形的面积为cm2,由,解得。又,所以该矩形面积小于32cm2的概率为,故选c5. (2012年高考湖北卷理科8)如图,在圆心角为直角的扇形oab中,分别以oa,ob为直径作两个半圆。在扇形oab内随机取一点,则此点取自阴影部分的概率是( )a. b. . c. d. 6(2011年高考湖北卷理科5)已知随机变量服从正态分布,且,则=( )a.0.6b.0.4c.0.3d.0.2【答案】 c【解析】由正态分布规律可知,则,故,所以选c.7(2011年高考陕西卷理科9)设, 是变量x和y的n个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是( )(a)x和y相关系数为直线l的斜率(b)x和y的相关系数在0到1之间(c)当n为偶数时,分布在l两侧的样本点的个数一定相同(d)直线过点【答案】d【解析】:由得又,所以则直线过点,故选d8. (2011年高考广东卷理科6)甲、乙两队进行排球决赛现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为( ) a. b. c. d.【答案】 d【解析】由题得甲队获得冠军有两种情况,第一局胜或第一局输第二局胜,所以甲队获得冠军的概率所以选d.9(2011年高考湖北卷理科7)如图,用k、a1、a2三类不同的元件连成一个系统.当k正常工作且a1、a2至少有一个正常工作时,系统正常工作.已知k、a1、a2正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为( )a.0.960b.0.864c.0.720d.0.576【答案】 b【解析】系统正常工作概率为,所以选b.10(2011年高考陕西卷理科10)甲乙两人一起去“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ( )(a) (b) (c) (d)【答案】d【解析】:各自独立地从1到6号景点中任选4个进行游览有种,且等可能,最后一小时他们同在一个景点有种,则最后一小时他们同在一个景点的概率是,故选d11. (2011年高考江西卷理科6)变量x与y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5); 变量u与v相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),表示变量y与x之间的线性相关系数,表示变量v与u之间的线性相关系数,则( ) a. b c d【答案】c【解析】由数据可以看出变量y与x之间是正相关, 变量v与u之间是负相关,所以,选c. 12. (2011年高考湖南卷理科4)通过随即询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,.附表:0.0500.0100.0013.8416.63510.828参照附表,得到的正确结论是( ) a.在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”b. 在犯错的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”c. 由99%以上的把握认为“爱好该项运动与性别有关”d. 由99%以上的把握认为“爱好该项运动与性别无关”【答案】 c【解析】因为k27.86.635, 由99%以上的把握认为“爱好该项运动与性别有关”,故选c.二填空题:13.(2012年高考江苏卷2)某学校高一、高二、高三年级的学生人数之比为,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生【答案】【解析】根据分层抽样的方法步骤,按照一定比例抽取,样本容量为,那么根据题意得:从高三一共可以抽取人数为:人,答案 .14. (2012年高考江苏卷6)现有10个数,它们能构成一个以1为首项,为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是 15(2012年高考上海卷理科11)三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是 (结果用最简分数表示).【答案】【解析】一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为.16.(2012年高考新课标全国卷理科15)某个部件由三个元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作,设三个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常相互独立,那么该部件的使用寿命超过1000小时的概率为 .三解答题:17(2012年高考湖北卷理科20)(本小题满分12分)根据以往的经验,某工程施工期间的将数量x(单位:mm)对工期的影响如下表:降水量xx300300x700700x900x900工期延误天数y02610历年气象资料表明,该工程施工期间降水量x小于300,700,900的概率分别为0.3,0.7,0.9,求:(i)工期延误天数y的均值与方差;()在降水量x至少是300的条件下,工期延误不超过6天的概率。【解析】()由已知条件和概率的加法公式有:,.所以的分布列为:026100.30.40.20.1 于是,;. 故工期延误天数的均值为3,方差为. ()由概率的加法公式,又. 由条件概率,得.故在降水量x至少是mm的条件下,工期延误不超过6天的概率是. 18(2012年高考福建卷理科16)(本小题满分13分)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计书数据如下: 将频率视为概率,解答下列问题:(i)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率;(ii)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为,生产一辆乙品牌轿车的利润为,分别求,的分布列;(iii)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由.【解析】(i)首次出现故障发生在保修期内的概率为(ii)随机变量的分布列为 随机变量的分布列为 (iii)(万元) (万元) 所以应该生产甲品牌汽车.19(2012年高考浙江卷理科19) (本小题满分14分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球的2分,取出一个黑球的1分现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量x为取出3球所得分数之和()求x的分布列;()求x的数学期望e(x)20(2012年高考山东卷理科19)(本小题满分12分)现有甲、乙两个靶,某射
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国华能越南公司招聘面试高频词汇与模拟题解析
- 2025年初级体育场馆管理面试指南与常见问题解答
- 2025年制香师考试高频考点梳理与模拟试题详解
- 护理课件进修汇报材料
- 2025年比特币投资项目合作计划书
- 吉林省松原市前郭县王府镇蒙古族学校、洪泉乡中学2025-2026学年上学期九年级期初考试暨第一次联考试卷 数学试卷 (含简单答案a)
- (新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计
- 抗生素的使用原则课件
- 小车考试新题及答案
- 2025年分步重复光刻机合作协议书
- 安保技能活动方案
- 殡仪服务站可行性研究报告
- 普通鱼缸买卖协议书
- T/CECS 10360-2024活毒污水处理装置
- 2026届高职单招考试大纲英语词汇(音标版)
- 临床护理文书书写规范课件
- 非法宗教班会课件
- 《电子商务基础(第二版)》课件 第六章 电子商务客户服务
- 寄生虫课件 吸虫学习资料
- 2025变压器中性点直流偏磁监测装置
- 2025第三届全国技能大赛竞赛(装配钳工赛项)省选拔赛考试题库(含答案)
评论
0/150
提交评论