




免费预览已结束,剩余68页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【备战2013高考数学专题讲座】第15讲:高频考点分析之最值探讨12讲,我们对客观性试题解法进行了探讨,38讲,对数学思想方法进行了探讨,912讲对数学解题方法进行了探讨,从第13讲开始我们对高频考点进行探讨。最值问题是中学数学的重要内容,它分布在中学数学的各个部分和知识水平层面。以最值为载体,可以考查中学数学的许多知识点,考查分类讨论、数形结合、转化与化归等诸多数学思想和方法,还可以考查学生的思维能力、实践和创新能力。纵观近年高考,从题型分布来看,大多数一道填空题或选择题,一道解答题;从分值来看,约占总分的10%左右,它在高考中占有比较重要的地位。分析考题的类型,高考中最值问题的呈现方式一般有以下几种:1函数(含三角函数)的最值;2学科内的其它最值,如几何中的最值问题、数列的最大项等等;3字母(函数)的取值范围;4不等式恒成立问题、存在性问题,常常转化为求函数的最值,例如: 对恒成立的最小值0成立,对恒成立的最大值0成立,等等;5实际应用问题,如最优化问题,可以通过建模可化为最值问题,等等。结合中学数学的知识,高考中最值问题的求解方式一般有以下几种:1应用配方法求最值;2应用不等式(含基本不等式)求最值;3应用导数求最值;4应用单调性等性质求最值;5应用函数的值域求最值;6应用三角函数求最值;7应用几何、向量知识求最值; 8应用线性规划求最值。结合2012年全国各地高考的实例,我们从以上八方面探讨最值问题的求解。一、应用配方法求最值:典型例题:例1. (2012年浙江省文5分)若正数x,y满足x+3y=5xy,则的最小值是【 】a. b. c.5 d.6【答案】c。【考点】基本不等式或配方法的应用。【解析】x+3y=5xy,。 。(或由基本不等式得) 5,即的最小值是5。故选c。例2.(2012年上海市理14分)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰在失事船的正南方向12海里a处,如图. 现假设:失事船的移动路径可视为抛物线;定位后救援船即刻沿直线匀速前往救援;救援船出发小时后,失事船所在位置的横坐标为7. (1)当时,写出失事船所在位置p的纵坐标. 若此时两船恰好会合,求救援船速度的大小和方向;(6分)(2)问救援船的时速至少是多少海里才能追上失事船?(8分)【答案】解:(1)时,p的横坐标,代入抛物线方程得p的纵坐标。 a(0,12), 。 救援船速度的大小为海里/时。 由tanoap=,得,救援船速度的方向为北偏东弧度。 (2)设救援船的时速为海里,经过小时追上失事船,此时位置为。 由,整理得。 当即=1时最小,即。 救援船的时速至少是25海里才能追上失事船。【考点】曲线与坐标。【解析】(1)求出a点和p点坐标即可求出。 (2)求出时速关于时间的函数关系式求出极值。例3.(2012年山东省文13分)如图,椭圆m:的离心率为,直线和 所围成的矩形abcd的面积为8.()求椭圆m的标准方程;() 设直线与椭圆m有两个不同的交点p,q,与矩形abcd有两个不同的交点s,t.求的最大值及取得最大值时m的值.【答案】解:()椭圆m:的离心率为,即。 矩形abcd面积为8,即由解得:。椭圆m的标准方程是。(ii)由得。设,则。由得。当过a点时,当过c点时,。当时,有,。设,则。当,即时,取得最大值。当时,由对称性,可知,当时,取得最大值。 当时,当时,取得最大值。综上可知,当时,取得最大值。【考点】椭圆的性质,矩形的性质,函数的极值。【解析】()由已知条件,根据椭圆m的离心率为 ,直线和 所围成的矩形abcd的面积为8,列方程组组求解。 ()应用韦达定理、勾股定理,用表示出,分,三种情况分别求解。例4.(2012年辽宁省文12分)如图,动圆,与椭圆:相交于a,b,c,d四点,点分别为的左,右顶点。 ()当为何值时,矩形的面积取得最大值?并求出其最大面积; () 求直线与直线交点m的轨迹方程。【答案】解:(i)设,则矩形的面积。 由得, 。 当时,最大为,。 , 当时,矩形的面积取得最大值,最大面积为6。()设,直线a1a的方程为,直线a2b的方程为。由可得:。在椭圆上,。代入可得:,点m的轨迹方程为。【考点】直线、圆、椭圆的方程,椭圆的几何性质,轨迹方程的求法。【解析】(i)设,应用函数方程思想求出最大时的情况即可。()设出线a1a的方程、直线a2b的方程,求得交点满足的方程,利用a在椭圆上,化简即可得到点m的轨迹方程。二、应用不等式(含基本不等式)求最值:典型例题:例1. (2012年安徽省理13分)设 (i)求在上的最小值; (ii)设曲线在点的切线方程为;求的值。【答案】解:(i)设,则。 当时,。在上是增函数。 当时,的最小值为。 当时, 当且仅当时,的最小值为。(ii),。 由题意得:,即,解得。【考点】复合函数的应用,导数的应用,函数的增减性,基本不等式的应用。【解析】(i)根据导数的的性质分和求解。 (ii)根据切线的几何意义列方程组求解。例2.(2012年安徽省文12分)设定义在(0,+)上的函数()求的最小值;(ii)若曲线在点处的切线方程为,求的值。【答案】解:(i), 当且仅当时,的最小值为。(ii)曲线在点处的切线方程为,。 。 又, 。 解得:。【考点】基本不等式的应用,导数的应用。【解析】(i)应用基本不等式即可求得的最小值。 (ii)由和联立方程组,求解即可求得的值。例3.(2012年陕西省理5分)在中,角所对边长分别为,若,则的最小值为【 】a. b. c. d. 【答案】c。【考点】余弦定理,基本不等式的应用。【解析】通过余弦定理求出cosc的表达式,利用基本不等式求出cosc的最小值:,。由余弦定理得,当且仅当时取“=”。的最小值为。故选c。例4.(2012年安徽省理5分)若平面向量满足:;则的最小值是 来【答案】。【考点】平面向量,基本不等式的应用。【解析】,。 又,。 的最小值是。例5.(2012年天津市理5分)设,若直线与圆相切,则的取值范围是【 】(a) ()()()【答案】d。【考点】直线与圆的位置关系,点到直线的距离公式,重要不等式,一元二次不等式的解法【分析】直线与圆相切,圆心到直线的距离为,。又,即。设,则,解得。故选d。例6. (2012年湖南省理5分)已知两条直线 :和:,与函数的图像从左至右相交于点a,b ,与函数的图像从左至右相交于c,d .记线段ac和bd在x轴上的投影长度分别为 , ,当m 变化时,的最小值为【 】a b. c. d. 【答案】b。【考点】数形结合,函数的图象,基本不等式的应用。【解析】如图,在同一坐标系中作出,图像, 由,得,由,得。根据题意得。,。故选b。例7. (2012年福建省理5分)下列不等式一定成立的是【 】alglgx(x0)bsinx2(xk,k)cx212|x|(x)d.1(x)【答案】c。【考点】不等式的性质以及基本不等式的应用。【解析】对于a,当x时,lglgx,所以a不一定成立;对于b,当sinx0时,不等式才成立,所以b不一定成立;对于c,命题显然正确;对于d,x211,00且。当mba=90时,点m的坐标为(2,, 3)。当mba90时,x2。由得 tanmba=,即化简得:。而点(2,,3)在上。时,。综上可知,轨迹c的方程为()。(ii)由方程消去y,可得。(*)由题意,方程(*)有两根且均在(1,+)内,设,解得,m1且m2。设q、r的坐标分别为,由有。由m1且m2得 且。 的取值范围是。 【考点】直线、双曲线、轨迹方程的求法,倍角公式的应用。【解析】()设m的坐标为(x,y),当mba=90时,可直接得到点m的坐标为(2,, 3);当mba90时,由应用倍角公式即可得到轨迹的方程。()直线与联立,消元可得,利用有两根且均在(1,+)内可知,m1,m2。设q,r的坐标,求出xr,xq,利用 ,即可确定 的取值范围。例10. (2012年四川省文12分)如图,动点与两定点、构成,且直线的斜率之积为4,设动点的轨迹为。()求轨迹的方程;()设直线与轴交于点,与轨迹相交于点,且,求的取值范围。【答案】解:()设m的坐标为(x,y),当x=1时,直线ma的斜率不存在;当x=1时,直线mb的斜率不存在;,ma的斜率为,mb的斜率为。由题意,有=4,化简可得,。轨迹的方程为()。()由消去y,可得 () 对于方程(),其判别式,而当1或1为方程(*)的根时,m的值为1或1,结合题设可知,且m1。设的坐标分别为,,则为方程(*)的两根。,。 。此时,且。 且。且。综上所述,的取值范围为 。【考点】直线、双曲线、轨迹方程的求法。【解析】()设m的坐标为(x,y),由当x=1时,直线ma的斜率不存在;当x=1时,直线mb的斜率不存在,得到,由直线的斜率之积为4列式即可得到轨迹的方程。()直线与联立,消元可得 (),利用()有两根且,且m1。设q,r的坐标,求出xr,xq,利用 ,即可确定 的取值范围。例11.(2012年江苏省14分)如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米某炮位于坐标原点已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关炮的射程是指炮弹落地点的横坐标(1)求炮的最大射程;(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,炮弹可以击中它?请说明理由【答案】解:(1)在中,令,得。 由实际意义和题设条件知。 ,当且仅当时取等号。 炮的最大射程是10千米。 (2),炮弹可以击中目标等价于存在,使成立, 即关于的方程有正根。 由得。 此时,(不考虑另一根)。 当不超过6千米时,炮弹可以击中目标。【考点】函数、方程和基本不等式的应用。【解析】(1)求炮的最大射程即求与轴的横坐标,求出后应用基本不等式求解。 (2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解。三、应用导数求最值:典型例题:例1. (2012年全国课标卷理5分)设点在曲线上,点在曲线上,则最小值为【 】 【答案】。【考点】反函数的性质,导数的应用。【解析】函数与函数互为反函数,它们的图象关于对称。 函数上的点到直线的距离为 设函数,则,。 由图象关于对称得:最小值为。故选。例2. (2012年重庆市理5分)设函数在上可导,其导函数为,且函数的图像如题图所示,则下列结论中一定成立的是【 】(a)函数有极大值和极小值 (b)函数有极大值和极小值 (c)函数有极大值和极小值 (d)函数有极大值和极小值【答案】d。【考点】函数在某点取得极值的条件,函数的图象。【分析】由图象知,与轴有三个交点,2,1,2, 。 由此得到, ,和在上的情况:212000000极大值非极值极小值 的极大值为,的极小值为。故选d。例3. (2012年陕西省理5分)设函数,则【 】a. 为的极大值点 b.为的极小值点c. 为的极大值点 d. 为的极小值点【答案】d。【考点】应用导数求函数的极值。【解析】,令得。当时,为减函数;当时,为增函数,所以为的极小值点。故选d。例4. (2012年陕西省文5分)设函数则【 】a=为的极大值点 b=为的极小值点c=2为 的极大值点 d=2为 的极小值点【答案】d。【考点】应用导数求函数的极值。【解析】,令得。当时,为减函数;当时,为增函数。为的极小值点。故选d。例5. (2012年全国课标卷理12分)已知函数满足满足;(1)求的解析式及单调区间;(2)若,求的最大值。【答案】解:(1),。令得,。,得。 的解析式为。 设,则。 在上单调递增。 又时,单调递增;时,单调递减。 的单调区间为:单调递增区间为,单调递减区间为。 (2),。令得。 当时,在上单调递增。 但时,与矛盾。 当时,由得;由得。 当时, 。 令;则。 由得;由得。 当时, 当时,的最大值为。【考点】函数和导函数的性质。【解析】(1)由求出和即可得到的解析式,根据导数的性质求出单调区间。(2)由和,表示出,根据导函数的性质求解。例6. (2012年北京市理13分)已知函数(1)若曲线与曲线在它们的交点(1,c)处具有公共切线,求a、b的值;(2)当时,求函数的单调区间,并求其在区间(,1)上的最大值。【答案】解:(1)(1,c)为公共切点,。 ,即。 又,。 又曲线与曲线在它们的交点(1,c)处具有公共切线, 。 解,得。(2),设。 则。令,解得。 ,。 又在各区间的情况如下:00在单调递增,在单调递减,在上单调递增。若,即时,最大值为;若,即时,最大值为。若时,即时,最大值为。综上所述:当时,最大值为;当时,最大值为1。【考点】函数的单调区间和最大值,切线的斜率,导数的应用。【解析】(1)由曲线与曲线有公共点(1,c)可得;由曲线与曲线在它们的交点(1,c)处具有公共切线可得两切线的斜率相等,即。联立两式即可求出a、b的值。 (2)由 得到只含一个参数的方程,求导可得的单调区间;根据 ,和三种情况讨论的最大值。 例7. (2012年天津市理14分)已知函数的最小值为,其中.()求的值;()若对任意的,有成立,求实数的最小值;()证明.【答案】解:()函数的定义域为,求导函数可得. 令,得。当变化时,和的变化情况如下表:0极小值在处取得极小值。由题意,得。()当0时,取,有,故0不合题意。当0时,令,即。求导函数可得。令,得。当时, 0,在(0,+)上恒成立,因此在(0,+)上单调递减,从而对任意的),总有,即对任意的,有成立。符合题意。当时,0,对于(0, ),0,因此在(0, )上单调递增,因此取(0, )时,即有不成立。 不合题意。综上,实数的最小值为。()证明:当=1时,不等式左边=2ln32=右边,所以不等式成立。当2时,。在(2)中,取,得,。综上,。【考点】导数在最大值、最小值问题中的应用,利用导数求闭区间上函数的最值。【分析】()确定函数的定义域,求导函数,确定函数的单调性,求得函数的最小值,利用函数的最小值为,即可求得的值。()当0时,取,有,故0不合题意。当0时,令,求导函数,令导函数等于0,分类讨论:当 时,0,在(0,+)上单调递减,从而对任意的),总有。当时,0,对于(0, ),0,因此在(0, )上单调递增。由此可确定的最小值。()当=1时,不等式左边=2ln32=右边,所以不等式成立。当2时,由,在()中,取得,从而可得,由此可证结论。例8. (2012年安徽省理13分)设 (i)求在上的最小值; (ii)设曲线在点的切线方程为;求的值。【答案】解:(i)设,则。 当时,。在上是增函数。 当时,的最小值为。 当时, 当且仅当时,的最小值为。(ii),。 由题意得:,即,解得。【考点】复合函数的应用,导数的应用,函数的增减性,基本不等式的应用。【解析】(i)根据导数的的性质分和求解。 (ii)根据切线的几何意义列方程组求解。例9. (2012年浙江省理14分)已知,函数()证明:当时, (i)函数的最大值为; (ii);()若对恒成立,求的取值范围【答案】() 证明:()当b0时,0在0x1上恒成立,此时的最大值为:|2ab|a;当b0时,在0x1上的正负性不能判断,此时的最大值为:|2ab|a。综上所述:函数在0x1上的最大值为|2ab|a。() 设, ,令。当b0时,0在0x1上恒成立,此时的最大值为:|2ab|a;当b0时,在0x1上的正负性不能判断,|2ab|a。综上所述:函数在0x1上的最大值小于(或等于)|2ab|a,即|2ab|a0在0x1上恒成立。()解:由()知:函数在0x1上的最大值为|2ab|a,且函数在0x1上的最小值比(|2ab|a)要大。11对x0,1恒成立,|2ab|a1。取b为纵轴,a为横轴则可行域为:和,目标函数为zab。作图如下:由图易得:当目标函数为zab过p(1,2)时,有所求ab的取值范围为:。【考点】分类思想的应用,不等式的证明,利用导数求闭区间上函数的最值,简单线性规划。【解析】() ()求导后,分b0和b0讨论即可。() 利用分析法,要证|2ab|a0,即证|2ab|a,亦即证在0x1上的最大值小于(或等于)|2ab|a。 ()由()知:函数在0x1上的最大值为|2ab|a,且函数在0x1上的最小值比(|2ab|a)要大根据11对x0,1恒成立,可得|2ab|a1,从而利用线性规划知识,可求ab的取值范围。例10. (2012年湖南省理13分)某企业接到生产3000台某产品的a,b,三种部件的订单,每台产品需要这三种部件的数量分别为,(单位:件).已知每个工人每天可生产部件件,或部件件,或部件件.该企业计划安排名工人分成三组分别生产这三种部件,生产部件的人数与生产部件的人数成正比,比例系数为k(k为正整数).()设生产部件的人数为,分别写出完成,三种部件生产需要的时间;()假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.【答案】解:()设完成a,b,三种部件的生产任务需要的时间(单位:天)分别为由题设有其中均为1到200之间的正整数。()完成订单任务的时间为其定义域为。易知,为减函数,为增函数。于是(1)当时, 此时 ,由函数的单调性知,当时取得最小值,解得。由于,故当时完成订单任务的时间最短,且最短时间为。(2)当时, 由于为正整数,故,此时。易知为增函数,则。由函数的单调性知,当时取得最小值,解得。由于此时完成订单任务的最短时间大于。(3)当时, 由于为正整数,故,此时。由函数的单调性知,当时取得最小值,解得。类似(2)的讨论,此时完成订单任务的最短时间为,大于。综上所述,当时完成订单任务的时间最短,此时生产,三种部件的人数分别为44,88,68。【考点】分段函数、函数单调性、最值,分类思想的应用。【解析】()根据题意建立函数模型。()利用单调性与最值,分、和三种情况讨论即可得出结论。例11. (2012年湖南省理13分)已知函数,其中0.()若对一切r,1恒成立,求的取值集合.()在函数的图像上取定两点,记直线ab的斜率为,问:是否存在,使成立?若存在,求的取值范围;若不存在,请说明理由.【答案】解:()若,则对一切,这与题设矛盾,又,故。令。当时,单调递减;当时,单调递增.当时,取最小值。于是对一切恒成立,当且仅当令则。当时,单调递增;当时,单调递减,当时,取最大值。当且仅当即时,式成立。综上所述,的取值集合为。()存在。由题意知,。令则。令,则。当时,单调递减;当时,单调递增,当,即。,。又。函数在区间上的图像是连续不断的一条曲线,存在使单调递增,故这样的是唯一的,且,故当且仅当时, 。综上所述,存在使成立.且的取值范围为。【考点】利用导函数研究函数单调性、最值、不等式恒成立, 分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法的应用。【解析】()用导函数法求出取最小值,对一切r,1恒成立转化为,从而得出的取值集合。()在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断。例12. (2012年江苏省16分)若函数在处取得极大值或极小值,则称为函数的极值点。已知是实数,1和是函数的两个极值点(1)求和的值;(2)设函数的导函数,求的极值点;(3)设,其中,求函数的零点个数【答案】解:(1)由,得。 1和是函数的两个极值点, ,解得。 (2) 由(1)得, , ,解得。 当时,;当时, 是的极值点。 当或时, 不是的极值点。 的极值点是2。(3)令,则。 先讨论关于 的方程 根的情况:当时,由(2 )可知,的两个不同的根为i 和一2 ,注意到是奇函数,的两个不同的根为一和2。当时, ,一2 , 1,1 ,2 都不是的根。由(1)知。 当时, ,于是是单调增函数,从而。此时在无实根。 当时,于是是单调增函数。又,的图象不间断, 在(1 , 2 )内有唯一实根。同理,在(一2 ,一i )内有唯一实根。 当时,于是是单调减两数。又, ,的图象不间断,在(一1,1 )内有唯一实根。因此,当时,有两个不同的根满足;当 时有三个不同的根,满足。现考虑函数的零点:( i )当时,有两个根,满足。而有三个不同的根,有两个不同的根,故有5 个零点。( 11 )当时,有三个不同的根,满足。而有三个不同的根,故有9 个零点。综上所述,当时,函数有5 个零点;当时,函数有9 个零点。【考点】函数的概念和性质,导数的应用。【解析】(1)求出的导数,根据1和是函数的两个极值点代入列方程组求解即可。 (2)由(1)得,求出,令,求解讨论即可。 (3)比较复杂,先分和讨论关于 的方程 根的情况;再考虑函数的零点。例13. (2012年全国课标卷文5分)设函数()求的单调区间()若a=1,k为整数,且当x0时,求k的最大值【答案】解:() f(x)的的定义域为,。 若,则,在上单调递增。 若,则当时,;当时,在上单调递减,在上单调递增。 ()a=1,。 当x0时,它等价于。 令,则。 由()知,函数在上单调递增。 ,在上存在唯一的零点。 在上存在唯一的零点,设此零点为,则。 当时,;当时,。 在上的最小值为。 又,即,。 因此,即整数k的最大值为2。【考点】函数的单调性质,导数的应用。【解析】()分和讨论的单调区间即可。 ()由于当x0时,等价于,令,求出导数,根据函数的零点情况求出整数k的最大值。例14. (2012年江西省文14分)已知函数在上单调递减且满足。(1)求的取值范围;(2)设,求在上的最大值和最小值。【答案】解:(1),。函数在上单调递减,对于任意的,都有。由得;由得。又当=0时,对于任意的,都有,函数符合条件;当=1时,对于任意的,都有,函数符合条件。综上所述,的取值范围是01。(2)。(i)当=0时,对于任意有,在0,1上的最小值是,最大值是;(ii)当=1时,对于任意有,在0,1上的最小值是,最大值是;(iii)当01时,由得,若,即时,在0,1上是增函数,在0,1上最大值是,最小值是;若,即时,在取得最大值g,在=0或=1时取到最小值:,当时,在=0取到最小值;当时,在=1取到最小值。【考点】利用导数求闭区间上函数的最值,利用导数研究函数的单调性。【解析】(1)由题意,函数在0,1上单调递减且满足,可求出函数的导数,将函数在0,1上单调递减转化为导数在0,1上的函数值恒小于等于0,再结合,这两个方程即可求得取值范围。(2)由题设条件,先求出的解析式,求出导函数,由于参数的影响,函数在0,1上的单调性不同,结合(1)的结论及分=0,=1, 01三类对函数的单调性进行讨论,确定并求出函数的最值。例15. (2012年湖北省文14分)设函数f(x)axn(1x)b(x0),n为整数,a,b为常数曲线yf(x)在(1,f(1)处的切线方程为xy1.()求a,b的值;(ii)求函数f(x)的最大值;(iii)证明:f(x).【答案】解:()f(1)b,由点(1,b)在xy1上,可得1b1,即b0。f(x)anxn1a(n1)xn,f(1)a。又切线xy1的斜率为1,a1,即a1。a1,b0。(ii)由()知,f(x)xn(1x)xnxn1,f(x)(n1)xn1。令f(x)0,解得x,即f(x)在(0,)上有唯一零点x0。在上,f(x)0,f(x)单调递增;在上,f(x)b2b3b7=;当n8时,bnb8=。n=7时,取得最大值,且的最大值为=。【考点】等差数列、等比数列、对数等基础知识,方程、分类与整合、化归与转化等数学思想的应用。【解析】()取n=1和n=2可得关于,的方程,解之即得。 ()作差求得,代入,根据对数的性质求解。例2. (2012年湖南省文5分)对于,将n表示为,当时,当时为0或1,定义如下:在的上述表示中,当,a2,ak中等于1的个数为奇数时,bn=1;否则bn=0.(1)b2+b4+b6+b8=.;(2)记cm为数列bn中第m个为0的项与第m+1个为0的项之间的项数,则cm的最大值是.【答案】(1)3;(2)2。【考点】数列问题。【解析】(1)观察知;依次类推;,;b2+b4+b6+b8=。(2)由(1)知cm的最大值为。例3. (2012年四川省文12分)已知数列的前项和为,常数,且对一切正整数都成立。()求数列的通项公式;()设,当为何值时,数列的前项和最大?【答案】解:()取n=1,得,。 若=0,则=0, 当n时,。 若,则,有当n时,两个相减得:,。数列公比是2的等比数列。综上所述,若=0, 则 ;若,则。()当且时,令,则。 是单调递减的等差数列(公差为lg2) 则 b1b2b3b6=;当n7时,bnb7=。数列lg的前6项的和最大,即当=6时,数列的前项和最大。【考点】等差数列、等比数列、对数等基础知识,分类与整合、化归与转化等数学思想的应用。【解析】(i)由题意,n=1时,由已知可知,分类讨论:由=0及,结合数列的和与项的递推公式可求。 (ii)由且时,令,则,结合数列的单调性可求和的最大项 。例4. (2012年四川省理14分)已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。()用和表示;()求对所有都有成立的的最小值;()当时,比较与的大小,并说明理由。【答案】解:()由已知得,交点a的坐标为,对求导得。 抛物线在点a处的切线方程为,即。()由(1)知,则成立的充要条件是。即知,对于所有的n成立,特别地,取n=2时,得到。当时,。当n=0,1,2时,显然。当时,对所有自然数都成立。满足条件的的最小值是。()由(1)知,则,。下面证明:。首先证明:当0x1时,设函数,则。当时,;当时,在区间(0,1)上的最小值min=g。当0x1时,0,即得。由0a1知0ak1(),。从而。【考点】导数的应用、不等式、数列。【解析】()根据抛物线与x轴正半轴相交于点a,可得a,进一步可求抛物线在点a处的切线方程,从而可得()由()知,则 成立的充要条件是,即知,对所有n成立。当时,;当n=0,1,2时,由此可得的最小值。()由()知,证明当0x1时, 即可证明: 。例5.(2012年四川省文14分)已知为正实数,为自然数,抛物线与轴正半轴相交于点,设为该抛物线在点处的切线在轴上的截距。()用和表示;()求对所有都有成立的的最小值;()当时,比较与的大小,并说明理由。【答案】解:()由已知得,交点a的坐标为,对求导得。 抛物线在点a处的切线方程为,即。()由(1)知,则成立的充要条件是。即知,对于所有的n成立,特别地,取n=1时,得到。当时,。当n=0时,。当时,对所有自然数都成立。满足条件的的最小值是3。()由(1)知,下面证明:。首先证明:当0x1时, ,设函数,则。当时,;当时,在区间(0,1)上的最小值min=g。当0x1时,0,即得。由0a1知0ak1(),。从而。【考点】导数的应用、不等式、数列。【解析】()根据抛物线与x轴正半轴相交于点a,可得a,进一步可求抛物线在点a处的切线方程,从而可得()由()知,则成立的充要条件是,即知,对所有n成立。当时,;当n=0时,由此可得的最小值。()由()知,证明当0x1时,即可证明:。例6. (2012年北京市文5分)某棵果树前n年的总产量s与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为【 】a.5 b.7 c.9 d.11【答案】c。【考点】直线斜率的几何意义。【解析】据图像识别看出变化趋势,利用变化速度可以用导数来解,但图像不连续,所以只能是广义上的。实际上,前n年的年平均产量就是前n年的总产量s与n的商:,在图象上体现为这一点有纵坐标与横坐标之比。 因此,要使前m年的年平均产量最高就是要这一点的纵坐标与横坐标之比最大,即这一点与坐标原点连线的倾斜角最大。图中可见。当n=9时,倾斜角最大。从而m值为9。故选c。例7. (2012年山东省理13分)在平面直角坐标系xoy中,f是抛物线c:x2=2py(p0)的焦点,m是抛物线c上位于第一象限内的任意一点,过m,f,o三点的圆的圆心为q,点q到抛物线c的准线的距离为。()求抛物线c的方程;()是否存在点m,使得直线mq与抛物线c相切于点m?若存在,求出点m的坐标;若不存在,说明理由;()若点m的横坐标为,直线l:y=kx+与抛物线c有两个不同的交点a,b,l与圆q有两个不同的交点d,e,求当时,的最小值。【答案】解:()f抛物线c:x2=2py(p0)的焦点f,设m,。由题意可知,则点q到抛物线c的准线的距离为,解得。抛物线c的方程为。()假设存在点m,使得直线mq与抛物线c相切于点m,而,即。由可得,则,即,解得,点m的坐标为。()点m的横坐标为,点m,。由可得。设,则。圆,圆心到直线l 的距离。,令。设,则。当时,即当时,。当时,。【考点】抛物线和圆的性质,切线斜率的应用和意义,韦达定理的应用,导数的应用。函数的单调性质。【解析】()由已知条件,根据抛物线和圆的性质列式求解。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年“十八项医疗核心制度”培训考试试题及答案
- 林业三清安全培训课件
- 血透透析护理常规试题及答案
- 2025年中心血站考试试题及答案
- DB6103T 61-2024 宝鸡特色饮食制作规程 烤全羊
- 家园安全知识培训课件
- UPVC排水管安装方案
- 李清照生平课件
- ZARA品牌2025年全球市场布局优化策略研究报告
- 2025年理线器项目提案报告
- 工程造价咨询绿色施工支持措施
- 大模型时代:生成式AI发展与科技创新范式
- 法律法规师德师风培训内容
- 江苏欧立可化工新材料有限公司年产10万吨石油添加剂N-甲基苯胺项目环评资料环境影响
- 黄浦区2024-2025学年六年级下学期期末考试数学试卷及答案(上海新教材沪教版)
- 《中国尖锐湿疣临床诊疗指南(2021版)》解读
- 2025安全注射培训
- 建筑垃圾处理技术标准(CJJT 134-2019)
- 《职业素养》课件全套 模块1-8 职业认知与职业道德 -职业发展素养
- 五年级美术素养测评模拟测试
- 销售流程与管理制度
评论
0/150
提交评论