外文翻译-卢磊2009.doc

柴油机气缸体钻孔组合机床总体及后主轴箱设计

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:439137    类型:共享资源    大小:2.09MB    格式:RAR    上传时间:2015-06-04 上传人:优****料 IP属地:境外
50
积分
关 键 词:
柴油机 气缸体 钻孔 组合 机床 总体 整体 后主 轴箱 设计
资源描述:

1 前言

1.1 课题内容

本组课题是为保证S195柴油机气缸体三面孔加工及保证相应的位置精度,需设计一台三面精镗卧式组合机床。在完成“三图一卡”的基础上,主要完成机床总体和后主轴箱设计。

1.2 课题来由

1.2.1 课题背景

课题来源于盐城市江动集团。为保证S195柴油机气缸体三面各主要孔的加工精度及保证相应的位置精度,需要设计一台三面精镗的组合机床。

1.2.2 课题要求

本加工工序的内容是:左端:钻螺纹底孔14×Φ6.7,Φ12.4,表面粗糙度均为   Ra12.5。右端:钻螺纹底孔9×Φ6.7,Φ8.5, 表面粗糙度均为Ra12.5。后端:钻螺纹底孔6-Φ12.4,表面粗糙度均为Ra12.5。

为了保证零件的加工精度,在整个设计过程中应满足以下几点要求:

a.加工部位的位置尺寸应与定位基准直接发生关系。

b.机床应运转平稳,工作可靠,结构简单。

c.装卸方便,便于维修,调整。

d.当本工序有特殊要求时必须标明。

1.3 组合机床国内外发展概述

组合机床是以系列化、标准化的通用部件为基准,配以少量的专用部件组成的专用机床。组合机床是随着生产的发展,由万能机床和专用机床发展来的。这种机床既具有专用机床的结构简单、生产率和自动化程度较高的特点,又具有一定的重新调整能力,以适应工件变化的需要,组合机床可以对工件进行多面、多主轴加工。组合机床兼有低成本和高效率的优点,在大批、大量生产中得到广泛应用,并可用以组成自动生产线。

随着科学技术的进步和市场需求的变化,现代机械制造业得到了较快的发展。多品种、小批量生产方式将成为今后的主要生产形式,制造系统正向着柔性化、集成化、智能化的方法发展,机床越来越多地采用先进的技术,加工效率不断地提高。机械产品的加工精度日益提高,高精度的机床大量出现。为了适应生产发展的需要,机床夹具正在向柔性化、高效化、自动化、精度化、标准化方向发展。

1.4 本课题主要解决的问题和总体设计思路

1.4.1 主要解决的问题

A 组合机床工艺方案的拟定。

B 组合机床总体设计,主要完成“三图一卡”的设计。

a)工序图;

b)加工示意图;

c)机床联系尺寸总图;

d)生产率计算卡。

C 后主轴箱设计

a)左主轴箱装配图;

b)箱子补充加工图;

c)零件图;

d)有关计算、校核。

1.4.2 总体设计思路

后主轴箱的设计,首先,在完成对组合机床的总体设计并绘制出“三图一卡”的基础上,绘制后主轴箱设计的装配图;主轴箱设计是组合机床设计中的重要部分,主轴箱设计的合理与否,直接影响到被加工精度等参数。首先确定工件的定位与夹紧方式,然后进行误差分析,对主轴箱的主要零件进行结构设计和验算。

2组合机床总体设计

2.1工艺方案的拟定

2.1.1被加工零件的特点

本设计是为钻削ZH1105W柴油机气缸体的三面31个轴孔的工序而专门设计的,为了能到达质量好、效率高,我们采用了工序集中的原则进行设计。

机床的配置型式主要有卧式和立式两种。卧式组合机床床身由滑座、侧底座及中间底座组合而成,其优点是加工和装配工艺性好,无漏油现象;同时安装、调试与运输也都比较方便;而且机床重心较低,有利于减小振动。其缺点是削弱了床身的刚性,占地面积大。立式组合机床床身由滑座、立柱及立柱底座组成。其优点是占地面积小、自由度大、操作方便。其缺点是机床重心高、振动大。

由于被加工的零件为ZH1105W柴油机气缸体的三面31个孔,该柴油机的体积小、重量较重,且为三面加工。根据零件的特点及生产纲领,应选用卧式床身,通过左右后三个动力头驱动三个主轴箱对零件三端面的31个孔进行加工较为妥当。

通过以上分析,初定本次设计方案为卧式三面组合钻床,三个动力头左右后布置。

2.1.2工艺路线的确定

工艺路线如下:

工序1    铸造

工序2    时效

工序3    粗铣底面、顶面

工序4    粗铣左面、右面

工序5    粗铣前面、后面

工序6    精铣底面、顶面

工序7    精铣左面、右面

工序8    精铣前面、后面

工序9    三面粗镗孔

工序10   三面半精镗孔

工序11   三面精镗孔

工序12   钻左面、右面、后面孔

工序13   钻顶面、底面、前面孔

工序14   攻丝

工序15   钻、扩、铰顶杆孔

工序16   最终检验

工序12的加工内容为:

a) 左端,钻螺纹底孔14×φ6.7、φ12.4,表面粗糙度均为Ra12.5

b) 右端,钻螺纹底孔9×φ6.7、φ8.5,表面粗糙度均为Ra12.5

c) 后端,钻螺纹底孔6×φ12.4,表面粗糙度均为Ra12.5

各孔的位置精度及具体要求详见ZH1105W气缸体的工序图。

内容简介:
液压挖掘机的半自动控制系弘阿拉亚雅之鹿儿岛 著 卢磊 译摘要:开发出了一种应用于液压挖掘机的半自动控制系统。采用该系统,即使是不熟练的操作者也能容易和精确地操控液压挖掘机。构造出了具有控制器 的液压挖掘机的精确数学控制模型,同时通过模拟实验研发出了其控制算法,并将其应用在液压挖掘机上,由此可以估算出它的工作效率。依照此 法,可通过正反馈及前馈控制、非线性补偿、状态反馈和增益调度等各种手段获得较高的控制精度和稳定性能。(自然杂志 2001 版权所有)关键词:施工机械;液压挖掘机;前馈;状态反馈;操作 1引言 液压挖掘机,被称为大型铰接式机器人,是一种施工机械。采用这种机器进行挖掘和装载操作,要求司机要具备高水平的操作技能,即便是熟练的司机也会产生相当大的疲劳。另一方面,随着操作者年龄增大,熟练司机的数量因而也将会减少。开发出一种让任何人都能容易操控的液压挖掘机 就非常必要了1-5。液压挖掘机之所以要求较高的操作技能,其理由如下。1.1液压挖掘机的操作:至少有两个操作手柄必须同时操作并且要协调好。1.2操作手柄:操作手柄的动作方向与其所控的臂杆组件的运动方向不同。 例如,液压挖掘机的反铲水平动作,必须同时操控三个操作手柄(动臂,斗柄,铲斗)使铲斗的顶部沿着水平面(图 1)运动。在这种情况下,操作手柄的操作表明了执行元件的动作方向,但是这种方向与工作方向不同。 如果司机只要操控一个操作杆,而其它自由杆臂自动的随动动作,操作就变得非常简单。这就是所谓的半自动控制系统。 开发这种半自动控制系统,必须解决以下两个技术难题: (1)自动控制系统必须采用普通的控制阀。(2)液压挖掘机必须补偿其动态特性以提高其控制精度。现已经研发一种控制算法系统来解决这些技术问题,通过在实际的液压挖掘机上试验证实了该控制算法的作用。而且我们已采用这种控制算法,设计出了液压挖掘机的半自动控制系统。 2液压挖掘机的模型为了研究液压挖掘机的控制算法,必须分析液压挖掘机的数学模型。液压挖掘机的动臂、斗柄、铲斗都是由液压力驱动,其模型如图 2 所示。模型的具体描述如下。2.1 动态模型6假定每一臂杆组件都是刚体,由拉格朗日运动方程可得以下表达式:其中g 是重力加速度;i 铰接点角度;i 是提供的扭矩;li 组件的长度;lgi 转轴中心到重心之距;mi 组件的质量;Ii 是重心处的转动惯量(下标 i=1-3;依次表示动臂,斗柄,铲斗)。2.2 挖掘机模型每一臂杆组件都是由液压缸驱动,液压缸的流量是滑阀控制的,如图 3 所示。可作如下假设:(1)液压阀的开度与阀芯的位移成比例。(2)系统无液压油泄漏。(3)液压油流经液压管道时无压力损失。(4)液压缸的顶部与杆的两侧同样都是有效区域。在这个问题上,对于每一臂杆组件,从液压缸的压力流量特性可得出以下方程:其中,Ai是液压缸的有效横截面积;hi是液压缸的长度;Xi是滑芯的位置;Psi是供给压力;P1i 是液压缸的顶边压力;P2i是液压缸的杆边压力;Vi是在液压缸和管道的油量;Bi是滑阀的宽度;是油的密度;K 是油分子的黏度;c是流量系数。152.3 连杆关系在图1所示模型中,液压缸长度改变率与杆臂的旋转角速度的关系如下:(1)动臂(2)斗柄 (3)铲斗2.4 扭矩关系从2.3节的连杆关系可知,考虑到液压缸的摩擦力,提供的扭矩i 如下 其中,Cci 是粘滞摩擦系数;Fi 是液压缸的动摩擦力。2.5 滑阀的反应特性 滑阀动作对液压挖掘机的控制特性产生会很大的影响。因而,假定滑阀相对参考输入有以下的一阶延迟。其中,是滑芯位移的参考输入;是时间常数。3 角度控制系统如图4所示,角基本上由随动参考输入角 通过位置反馈来控制。为了获得更精确的控制,非线性补偿和状态反馈均加入位置反馈中。以下详细讨论其控制算法。3.1 非线性补偿在普通的自动控制系统中,常使用如伺服阀这一类新的控制装置。在半自动控制系统中,为了实现自控与手控的协调,必须使用手动的主控阀。这一类阀中,阀芯的位移与阀的开度是非线性的关系。因此,自动控制操作中,利用这种关系,阀芯位移可由所要求的阀的开度反推出来。 3.2 状态反馈建立在第 2 节所讨论的模型的基础上,若动臂角度控制动态特性以一定的标准位置逼近而线性化(滑芯位移X10,液压缸压力差P110,动臂夹角10),则该闭环传递函数为其中,Kp是位置反馈增益系数;由于系统有较小的系数a1,所以反应是不稳定的。例如,大型液压挖掘机SK-16 中。X10 是 0,给出的系数a0=2.7,a1=6.0,a2=1.2。加上加速度反馈放大系数Ka,因而闭环(图4的上环)的传递函数就是其中,Kp是位置反馈增益系数;由于系统有较小的系数a1,所以反应是不稳定的。例如,大型液压挖掘机SK-16 中。X10 是 0,给出的系数a0=2.7,a1=6.0,a2=1.2。加上加速度反馈放大系数Ka,因而闭环(图4的上环)的传递函数就是 加入这个因素,系数S就变大,系统趋于稳定。可见,利用加速度反馈来提高反应特性效果明显。但是,一般很难精确的测出加速度。为了避免这个问题,改用液压缸力反馈取代加速度反馈(图4的下环)。于是,液压缸力由测出的缸内的压力计算而滤掉其低频部分7,8。这就是所谓的压力反馈。4 伺服控制系统当一联轴器是手动操控,而其它的联轴器是因此而被随动作控制时,这必须使用伺服控制系统。例如,如图6所示,在反铲水平动作控制中,动臂的控制是通过保持斗柄底部 Z(由1与2计算所得)与Zr 的高度。为了获得更精确的控制引入以下控制系统。4.1 前馈控制由图1计算 Z,可以得到将方程(8)两边对时间求导,得到以下关系式,右边第一个式子看作是表达式(反馈部分)将替换成1,右边第二个式子是表达式(前馈部分)计算当2手动地改变时,1的改变量。实际上,用不同的2值可确定1。通过调整改变前馈增益 Kff,可实现最佳的前馈率。 采用测量斗柄操作手柄的位置(如角度)取代测斗柄的角速度,因为驱动斗柄的角速度与操作手柄的位置近似成比例。4.2 根据位置自适应增益调度类似液压挖掘机的铰接式机器人,其动态特性对位置非常敏感。因此,要在所有位置以恒定的增益稳定的控制机器是困难的。为了解决这个难题,根据位置的自适应增益调度并入反馈环中(图6)。如图7所示,自适应放大系数(KZ或 K)作为函数的两个变量,2和Z 、2表示斗柄的伸长量,Z是表示铲斗的高度。5 模拟实验结论反铲水平动作控制的模拟实验是将本文第4节所描述的控制算法用在本文第2节所讨论的液压挖掘机的模型上。(在 SK-16 大型液压挖掘机进行模 拟实验。)图8表示其中一组结果。控制系统启动5秒以后,逐步加载扰动。图9表示使用前馈控制能减少控制错误的产生.6 半自动控制系统建立在模拟实验的基础上,半自动控制系统已制造出来,应用在 SK-16型挖掘机上试验。通过现场试验可验证其操作性。这一节将讨论该控制系统的结构与功能。6.1 结构图10的例子中,控制系统由控制器、传感器、人机接口和液压系统组成。控制器是采用16位的微处理器,能接收来自动臂、斗柄、铲斗传感器的角度输入信号,控制每一操作手柄的位置,选择相应的控制模式和计算其实际改变量,将来自放大器的信号以电信号形式输出结果。液压控制系统控制产生的液压力与电磁比例阀的电信号成比例,主控阀的滑芯的位置控 制流入液压缸液压油的流量。为获得高速度、高精度控制,在控制器上采用数字处理芯片,传感器上使用高分辨率的磁编码器。除此之外,在每一液压缸上安装压力传感器以便获得压力反馈信号。以上处理后的数据都存在存储器上,可以从通信端口中读出。6.2 控制功能 控制系统有三种控制模式,能根据操作杆和选择开关自动切换。其具体功能如下。(1)反铲水平动作模式:用水平反铲切换开关,在手控斗柄推动操作中,系统自动的控制斗柄以及保持斗柄底部的水平运动。在这种情况下,当斗柄操 作杆开始操控时,其参考位置是从地面到斗柄底部的高度。对动臂操作杆的 手控操作能暂时中断自动控制,因为手控操作的优先级高于自动控制。(2)铲斗水平举升模式:用铲斗水平举升切换开关,在手控动臂举升操作中,系统自动控制铲斗。保持铲斗角度等于其刚开始举升时角度以阻止 原材料从铲斗中泄漏。(3)手控操作模式:当既没有选择反铲水平动作模式,也没有选择铲斗水平举升模式时,动臂,斗柄,铲斗都只能通过手动操作。 系统主要采用C语言编程来实现这些功能,以构建稳定模组提高系统的运行稳定性。7 现场试验结果与分析通过对系统进行现场试验,证实该系统能准确工作。核实本文第 3、4节所阐述的控制算法的作用,如下所述。7.1 单个组件的自动控制测试对于动臂、斗柄、铲斗每一组件,以5的梯度从最初始值开始改变其参考角度值,测量其反应,从而确定第3节所描述的控制算法的作用。7.1.1 非线性补偿的作用图11表明动臂下降时的测试结果。因为电液系统存在不灵敏区,当只有简单的位置反馈而无补偿时(图11中的关)稳态错误仍然存在。加入非线性补偿后(图11中的开)能减少这种错误的产生。7.1.2 状态反馈控制的作用 对于斗柄和铲斗,只需位置反馈就可获得稳定响应,但是增加加速度或压力反馈能提高响应速度。以动臂为例,仅只有位置反馈时,响应趋向不稳定。加入加速度或压力反馈后,响应的稳定性得到改进。例如,图12表示动臂下降时,采用压力反馈补偿时的测试结果。7.2 反铲水平控制测试 在不同的控制和操作位置下进行控制测验,观察其控制特性,同时确定最优控制参数(如图6所示的控制放大系数)。7.2.1 前馈控制作用 在只有位置反馈的情况下,增大放大系数 Kp,减少Z 错误,引起系统不稳定,导致系统延时,例如图13所示的“关”,也就是 Kp 不能减小。采用第4.1节所描述的斗柄臂杆前馈控制能减少错误而不致于增大 Kp。如图示的“开”。7.2.2 位置的补偿作用 当反铲处在上升位置或者反铲动作完成时,反铲水平动作趋于不稳定。不稳定振荡可根据其位置改变放大系数Kp来消除,如第4.2节所讨论的。图14表示其作用,表明反铲在离地大约 2米时水平动作结果。与不装补偿装置的情况相比较,图中的关表示不装时,开的情况具有补偿提供稳定响应。7.2.3 控制间隔的作用关于控制操作的控制间隔的作用,研究结果如下:1.当控制间隔设置在超过100ms时,不稳定振荡因运动的惯性随位置而加剧。2.当控制间隔低于50ms时,其控制操作不能作如此大提高。 因此,考虑到计算精度,控制系统选定控制间隔为50
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:柴油机气缸体钻孔组合机床总体及后主轴箱设计
链接地址:https://www.renrendoc.com/p-439137.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!