第55课时综合性问题型题.doc_第1页
第55课时综合性问题型题.doc_第2页
第55课时综合性问题型题.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第50课时几何综合测验【复习要点】 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式出现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数几何知识解题【实弹射击】1、(08广东省)将两块大小一样含30角的直角三角板,叠放在一起,使得它们的斜边AB重合,直角边不重合,已知AB=8,BC=AD=4,AC与BD相交于点E,连结CD(1)填空:如图a,AC= ,BD= ;四边形ABCD是 梯形.(2)请写出图a中所有的相似三角形(不含全等三角形).EDCHFGBAPyx图10b(3)如图b,若以AB所在直线为轴,过点A垂直于AB的直线为轴建立如图10的平面直角坐标系,保持ABD不动,将ABC向轴的正方向平移到FGH的位置,FH与BD相交于点P,设AF=t,FBP面积为S,求S与t之间的函数关系式,并写出t的取值值范围.DCBAE图a2、(09广东省) 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:RtABM RtMCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时RtABM RtAMN,求此时x的值.3、(10广东省)如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2。动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动。连接FM、FN,当F、N、M不在同一直线时,可得FMN,过FMN三边的中点作PQW。设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒。试解答下列问题:(1)说明FMNQWP;(2)设0x4(即M从D到A运动的时间段)。试问x为何值时,PQW为直角三角形?当x在何范围时,PQW不为直角三角形?第3题图(2)ABCDFMNWPQ(3)问当x为何值时,线段MN最短?求此时MN的值。第3题图(1)ABMCFDNWPQ4、(08茂名市)如图,O是ABC的外接圆,且AB=AC,点D在弧BC上运动,过点D作DEBC,DE交AB的延长线于点E,连结AD、BD(1)求证:ADB=E;(3分)(2)当点D运动到什么位置时,DE是O的切线?请说明理由(3分)(3)当AB=5,BC=6时,求O的半径(4分)相关链接 :若是一元二次方程的两根,则 AxyBCO5、(08茂名市)如图,在平面直角坐标系中,抛物线=+经过A(0,4)、B(,0)、 C(,0)三点,且-=5(1) 求、的值;(2) (2)在抛物线上求一点D,使得四边形BDCE是以BC为对角线的菱形;(3)在抛物线上是否存在一点P,使得四边形BPOH是以OB为对角线的菱形?若存在,求出点P的坐标,并判断这个菱形是否为正方形?若不存在,请说明理由 6、(08梅州市)如图所示,E是正方形ABCD的边AB上的动点, EFDE交BC于点F(1)求证: ADEBEF;(2) 设正方形的边长为4, AE=,BF=当取什么值时, 有最大值?并求出这个最大值7、(08梅州市)如图所示,在梯形ABCD中,已知ABCD, ADDB,AD=DC=CB,AB=4以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系(1)求DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由) 8、(2008湛江市) 如图所示,已知抛物线与轴交于A、B两点,与轴交于点CCPByA(1)求A、B、C三点的坐标(2)过点A作APCB交抛物线于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论