高考数学一轮复习 第二章 函数 第四节 二次函数与幂函数课件 理.ppt_第1页
高考数学一轮复习 第二章 函数 第四节 二次函数与幂函数课件 理.ppt_第2页
高考数学一轮复习 第二章 函数 第四节 二次函数与幂函数课件 理.ppt_第3页
高考数学一轮复习 第二章 函数 第四节 二次函数与幂函数课件 理.ppt_第4页
高考数学一轮复习 第二章 函数 第四节 二次函数与幂函数课件 理.ppt_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四节二次函数与幂函数 总纲目录 教材研读 1 二次函数与幂函数 考点突破 2 幂函数 考点二二次函数的图象与性质 考点一幂函数的图象与性质 考点三二次函数闭区间上的最值 教材研读 1 二次函数 1 二次函数的定义形如 f x ax2 bx c a 0 的函数叫做二次函数 2 二次函数的三种表示形式 i 一般式 f x ax2 bx c a 0 ii 顶点式 f x a x m 2 n a 0 iii 两根式 f x a x x1 x x2 a 0 3 二次函数y ax2 bx c a 0 的图象和性质 2 幂函数 1 幂函数的定义形如 y x 的函数称为幂函数 其中x是 自变量 为 常数 2 幂函数的性质 i 当 0时 幂函数y x 有下列性质 a 图象都过点 0 0 1 1 b 在第一象限内 函数值随x的增大而增大 ii 当 0时 幂函数y x 有下列性质 a 图象都过点 1 1 b 在第一象限内 函数值随x的增大而减小 3 五种常见幂函数的性质 1 y x2 y y 4x2 y x5 1 y x 1 2 y x y ax a 1 上述函数是幂函数的有 a 0个b 1个c 2个d 3个 答案c只有y x2 y x是幂函数 故选c c 2 已知函数f x ax2 x 5的图象在x轴上方 则a的取值范围是 a b c d 答案c由题意知即得a c 3 若四个幂函数y xa y xb y xc y xd在同一坐标系中的图象如图 则a b c d的大小关系是 a d c b ab a b c dc d c a bd a b d c 答案b根据幂函数的性质及图象可知选b b 4 已知幂函数f x k x 的图象过点 则k 答案 解析由幂函数的定义知k 1 又f 所以 解得 从而k 5 已知f x ax2 bx 3a b是偶函数 且其定义域为 a 1 2a 则y f x 的值域为 答案 解析因为f x ax2 bx 3a b是偶函数 所以其定义域 a 1 2a 关于原点对称 所以a 1 2a 所以a 因为f x ax2 bx 3a b是偶函数 即f x f x 所以b 0 所以f x x2 1 x 其值域为 考点一幂函数的图象与性质典例1 1 已知幂函数f x m2 3m 3 xm 1为偶函数 则m a 1b 2c 1或2d 3 考点突破 2 若 a 1 3 2a 则实数a的取值范围是 a 答案 1 a 2 解析 1 幂函数f x m2 3m 3 xm 1为偶函数 m2 3m 3 1 即m2 3m 2 0 解得m 1或m 2 当m 1时 幂函数f x x2为偶函数 满足条件 当m 2时 幂函数f x x3为奇函数 不满足条件 故选a 2 易知函数y 的定义域为 0 在定义域内为增函数 所以解得 1 a 规律总结 1 幂函数的形式是y x r 其中只有一个参数 因此只需一个条件即可确定其解析式 2 若幂函数y x r 是偶函数 则 必为偶数 当 是分数时 一般将解析式先化为根式的形式 再判断奇偶性 3 若幂函数y x 在 0 上单调递增 则 0 若在 0 上单调递减 则 0 1 1已知幂函数y f x 的图象过点 则log9f 3 的值为 a b c 2d 2 答案a设幂函数f x x 为常数 由题意得 解得 所以f x 所以log9f 3 log9 a 1 2已知a b c 2 则 a b a cb a b cc b c ad c a b 答案aa c 2 而函数y 在 0 上单调递增 所以 即b a c 故选a a 考点二二次函数的图象与性质 典例2对实数a和b 定义运算 a b 设函数f x x2 2 x x2 x r 若函数y f x c的图象与x轴恰有两个公共点 则实数c的取值范围是 a 2 b 2 c d b 答案b 解析当x2 2 x x2 1 即 1 x 时 f x x2 2 当x2 2 x x2 1 即x时 f x x x2 f x f x 的图象如图所示 所以c 2或 1 c 典例3已知二次函数f x 满足f 2 1 f 1 1 且f x 的最大值是8 试确定此二次函数的解析式 解析解法一 设f x ax2 bx c a 0 依题意有解得 所求二次函数的解析式为f x 4x2 4x 7 解法二 设f x a x m 2 n a 0 f 2 f 1 抛物线的对称轴为直线x m 又函数f x 的最大值是8 f x a 8 f 2 1 a 8 1 解得a 4 f x 4 8 4x2 4x 7 解法三 依题意知f x 1 0的两根为x1 2 x2 1 故可设f x 1 a x 2 x 1 a 0 即f x ax2 ax 2a 1 又函数f x 的最大值为8 8 a 0 解得a 4 函数解析式为f x 4x2 4x 7 方法技巧求二次函数的解析式 一般用待定系数法 其关键是根据已知条件恰当选择二次函数解析式的形式 一般选择规律如下 2 1设f x 若存在实数b 使得函数g x f x b有两个零点 则a的取值范围是 0 1 答案 0 1 解析如图 由y x3和y x2的图象可知 若存在b使g x f x b有两个零点 即f x b有两个实根 则a1 2 2已知二次函数f x 的图象经过点 4 3 且截x轴所得的线段长为2 并且对任意x r 都有f 2 x f 2 x 求f x 的解析式 解析 f 2 x f 2 x 对x r恒成立 f x 的图象的对称轴为直线x 2 又 f x 的图象截x轴所得的线段长为2 f x 0的两根为1和3 设f x 的解析式为f x a x 1 x 3 a 0 又 f x 的图象过点 4 3 3a 3 a 1 f x 的解析式为f x x 1 x 3 即f x x2 4x 3 考点三二次函数闭区间上的最值命题方向一求二次函数闭区间上的最值 典例4已知f x ax2 2x 求f x 在 0 1 上的最小值 解析 当a 0时 f x 2x 其在 0 1 上递减 当0 x 1时 f x min f 1 2 当a 0时 f x ax2 2x的图象的开口方向向上 且对称轴为x 当 1 即a 1时 f x 在上递减 在上递增 当0 x 1时 f x min f 当 1 即0 a 1时 f x 在 0 1 上递减 当0 x 1时 f x min f 1 a 2 当a 0时 f x ax2 2x的图象的开口方向向下 且对称轴x 在y轴的左侧 f x ax2 2x在 0 1 上递减 当0 x 1时 f x min f 1 a 2 综上所述 当0 x 1时 f x min 典例5已知函数f x ax2 2x 2 若对一切x f x 0都成立 则实数a的取值范围为 a b c 4 d 4 命题方向二二次函数中恒成立问题 答案b 解析因为对一切x f x 0都成立 所以当x 时 a 2 又 2 则实数a的取值范围为 b 方法技巧 1 二次函数的最值问题的类型及求解方法 1 类型 对称轴 区间都是给定的 对称轴动 区间固定 对称轴定 区间变动 2 求解方法 抓住 三点一轴 进行数形结合 三点是指区间两个端点和中点 一轴指的是对称轴 具体方法是利用配方法 函数的单调性及分类讨论的思想求解 2 二次函数中恒成立问题的求解思路求解恒成立问题中的参数问题时 常用思路是分离参数 这种思路是将问题归结为求函数的最值 其依据是a f x a f x max a f x a f x min 应用时注意f x 的最大 小 值是否存在 3 1若函数f x x2 2x 1在区间 a a 2 上的最小值为4 则a的取值集合为 a 3 3 b 1 3 c 3 3 d 1 3 3 答案cf x x2 2x 1 x 1 2 图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论