



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
配方法的拓展与解析配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。配方法的配方依据是二项完全平方公式(ab)a2abb,将这个公式灵活运用,可得到各种基本配方形式,如:ab(ab)2ab(ab)2ab;aabb(ab)ab(ab)3ab。配方法在数学的教与学中有着广泛的应用。在初中阶段它主要适用于:一元二次方程、二次函数、二次代数式的讨论与求解。经过几年的教学实践发现:很多情况下用配方法解一元二次方程或者求二次函数的顶点坐标要比用公式法简单实用。在应用配方法解一元二次方程(ax2+bx+c=0)时有两种做法:一种是先移走常数项,然后方程两边同时除以二次项的系数,把二次项系数化为1,再两边同时加上一次项系数(除以二次项系数后的)一半的平方,把原方程化成(xm)=n(n0)的形式,再两边同时开方,把一元二次方程转化为一元一次方程。典型例题:2x2+6x-3=0解法1:移项得:2x2+6x=3两边同时除以2得:两边同时加得: 所以:开方得:或解得:另一种方法是先移走常数项,然后通过“凑”与“配”进行配方。解法2:移项得:2x2+6x=3 原方程变为:即原方程化为:两边同时开方得:或解得:与用配方法解一元二次方程不同的是,在用配方法求二次函数的顶点坐标时,要把二次项和一次项看作一个整体,提出(而不是除以)二次项的系数,再进行配方,但配方时与解一元二次方程的配方有所不同。典型例题2:用配方法求的顶点坐标解: =如上例,用配方法求二次函数顶点坐标时,不是等号两边同时加上一次项系数一半的平方,而是在中括号里加上一次项系数一半的平方,但为了保持原有的二次函数不变,必须在中括号里再减去一次项系数一半的平方。这是学生在以后学习用配方法求二次函数顶点坐标时经常与用配方法解一元二次方程相混淆的地方,也是学生经常出错的地方。另外配方法在二次代数式的讨论与求解中应用也非常广泛。典型例题3:用配方法证明:无论x为何实数,代数式的值恒大于零。与用配方法求二次函数的顶点坐标类似,此题也是把二次项和一次项看作一个整体,并对其进行配方。解法如下:=0无论x为何实数,代数式的值恒大于零。典型例题4:若,求的值。此题可以运用“裂项”与“凑”的技巧,把-20xy裂成-18xy与-2xy的和,来完成配方,并根据完全平方式为非负数的性质把二元二次方程化为二元一次方程组。其解法如下:即,典型例题5:(2005 卡西欧杯 全国初中数学竞赛)若M=3x2-8xy+9y2-4x+6y+13(x,y是实数),则M的值一定是( )A 正数 B负数 C零 D整数精析:先将元多项式转化成几个完全平方式的和的形式,然后就其结构特征进行合理的分析、推理,可达到目的。解:因为M=3x2-8xy+9y2-4x+6y+13=2(x-2y)2+(x-2)2+(y+3)20并且2(x-2y)2,(x-2)2,(y+3)2这三个式子不能同时为0,所以M0,故选A。典型例题6 化简二次根式精析:复合二次根式的化简是竞赛中比较常见的问题,化简的关键是将被开方数化成完全平方的形式,要用到配方的思想。解:同理可得所以,原式=8典型例题7 已知三角形的三边a,b,c满足a2+b2+c2=ab+ac+bc,请你判断这个三角形的形状。精析:确定三角形的形状,主要是讨论三条边之间的关系。代数式a2+b2+c2=ab+ac+bc之中蕴含了完全平方式,我们要重新拆项,组合如下:2a2+2b2+2c2=2ab+2ac+2bc2a2+2b2+2c2-2ab
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年汾阳市属事业单位考试试卷
- 2025年4月广东潮州市第三人民医院招聘编外人员49人考前自测高频考点模拟试题有答案详解
- 2025湖南高速土地资源经营有限公司第二批任务型劳动合同人员招聘1人考前自测高频考点模拟试题及答案详解(易错题)
- 2025贵州兴义民族师范学院招聘二级学院院长考前自测高频考点模拟试题有完整答案详解
- 2025年宁东镇公开招聘公益性岗位人员模拟试卷及一套完整答案详解
- 2025甘肃陇南慈航精神康复医院招聘17人考前自测高频考点模拟试题附答案详解(模拟题)
- 2025年洛阳市考古研究院引进急需短缺人才模拟试卷完整答案详解
- 2025广东清远市清城区公路事务中心招聘1人模拟试卷及一套参考答案详解
- 2025广东深圳长虹聚和源科技有限公司招聘业务经理岗位人员考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年枣庄市市直公立医院公开招聘备案制工作人员(141人)考前自测高频考点模拟试题附答案详解
- GB/T 20863.2-2025起重机分级第2部分:流动式起重机
- 2025机采棉作业合同协议书范本
- 仓库安全培训课件
- 树木学试题及答案北林
- 学生历史思维品质提升策略浅识
- 财政补贴政策在促进农村电商发展的扶持效果可行性分析报告
- 《创伤失血性休克中国急诊专家共识(2023)》解读 2
- 2025第三季度作风建设党课以忠诚廉洁担当的政治品格奋力书写高质量发展新答卷
- 项目部领导带班记录
- 打井设备成套转让协议书
- 组织结构的权力与权威
评论
0/150
提交评论