



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第22课时 图形的变换复习教学目标:1、了解轴对称、平移、旋转这三种图形变化的主要特征和基本性质。2、会判断常见图形的对称性,探索图形之间的变换关系。3、会利用轴对称、平移、旋转的组合进行图案设计。复习教学过程设计一、【唤醒】1、 填空:(1)变换类型要求性质研究变换图形的关键翻折沿一条直线翻折_翻折后所得图形与原图形关于这条直线成 对称。对应点所连的线段被对称轴_。找对应点找对应边找对应角找对应图形平移需要知道原来的位置及平移的 和 平移不改变图形的 和 _对应点的连线_且_。旋转需要知道原来的位置和旋转中心外,还要知道旋转的方向及旋转角度。对应点到旋转中心距离 对应点的旋转中心的连线所成的角彼此 。(2)如图所示,aob=cod=60,oa=ob,oc=od,把aoc绕着点o旋转60,点a将落在点_上,点c将落在点_上,因此,aoc与bod可以通过_变换完全重合。b c (1) (2) (3)a o d 第(2)题 第(3)题(3)如图,由小正方形组成的l形图中,请你用三种方法分别在上图中添画一个小正方形使它成为轴对称图形。2、 判断:(1) 旋转变换前后的图形中,对应线段平行且相等,对应角相等。 ( )(2) 关于某直线对称的两个图形,对应角相等,对应点连线平行且相等。 ( )(3) 平移后的图形与原来的图形的对应线段平行且相等。 ( )3、 选择题:(1)如果abc和a1b1c1成中心对称,a1b1c1和a2b2c2成轴对称,则abc和a2b2c2有( )a.全等关系 b.无全等关系 c.可能有全等关系 d.以上都不对(2)矩形abcd和a1b1c1d1于点a成中心对称,则四边形bdb1d1是 ( )a ec d b a.矩形 b.菱形 c.正方形 d.梯形(3)如图,有一块直角三角形纸片,两直角边ac=6cm,bc=8cm,现将直角边ac沿直线ad折叠,使它落在斜边ab上,且与ae重合,则cd等于( )a.2cm b.3cm c.4cm d.5cm二、【尝试】acbo例1、 在下面的网格中按要求画出图形,要求:先画出abc向下平移5格后的a1b1c1,再画出adcbmnoabc以点o为旋转中心,沿顺时针方向旋转90后的a2b2c2。例1图 例2图例2、 已知:如图: abcd(1)画出 a1b1c1d1,使 a1b1c1d1与 abcd关于直线mn对称;(2)画出 a2b2c2d2,使与 abcd关于点o中心对称;(3) a1b1c1d1与 a2b2c2d2是对称图形吗?若是,请在图上画出对称轴或对称中心。a 提炼:由例1和例2可知,画变换图形应抓住对应点,先画点,再连线。d例3、如图:线段ab绕点o旋转了一个角度后成为线段cd,由于不小心点o被擦掉,你能找到点o的位置吗?cb分析:由于对应点到旋转中心的距离相等,即ao=co,bo=do,因此点o既在线段ac的垂直平分线上,又在线段bd的垂直平分线上,帮点o在两垂直平分线的交点上。解答见复习指导p116。提炼:对应点连线的中垂线过旋转中心。a例4,(1)操作与证明:如图,o是边长为a的正方形abcd的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在o点处,并将纸板绕o点旋转。求证:正方形abcd的边被纸板覆盖部分的总长度为定值a。a nebdaoooocdbcbc(2)尝试与思考:如图,将一块半径足够长的扇形纸板的圆心放在边长为a的正三角形或边长为a的正五边形的中心o点处,并将纸板绕o点旋转。当扇形纸板的圆心角为 时,正三角形的边被纸板覆盖部分的总长度为定值a;当扇形纸板的圆心角为 时,正五边形的边被纸板覆盖部分的总长度也为定值a。(正多边形的中心即正多边形各边垂直平分线的交点.)分析:本题为实验型探究题,解题的关键在于理解题意,按题意动手操作,在动手操作中获得知识,接着把正方形推广到正三角形和正五边形。进而引申到任意正多边形中去,体现了从特殊到一般研究数学问题的方法,有效地考查了学生动手、观察、猜想、归纳、探究的能力。解:(1)略 (2)120
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 火电电力职业鉴定练习题附完整答案详解【必刷】
- 2024咨询工程师试题预测试卷(典优)附答案详解
- 2024-2025学年度自考专业(国贸)复习提分资料(网校专用)附答案详解
- 泉州海洋职业学院单招《物理》预测复习附答案详解(综合卷)
- 2025-2026学年度导游资格考试考前冲刺试卷有完整答案详解
- 2025年货品仓储保险合同
- 2024-2025学年自考专业(金融)试卷【培优】附答案详解
- 2024-2025学年自考专业(工商企业管理)模考模拟试题含完整答案详解(有一套)
- 2025医师定期考核经典例题及答案详解【基础+提升】
- 2025年自考专业(计算机应用)自我提分评估含答案详解【培优B卷】
- 网络交友新时代课件
- 2024年江南大学公开招聘辅导员笔试题含答案
- 电商直播行业合规性风险管控与流程优化报告
- 2025贵州贵阳机场安检站安检员岗位实习人员招聘笔试历年参考题库附带答案详解
- 建设工地试验室日常质量监督计划
- 第08讲+建议信(复习课件)(全国适用)2026年高考英语一轮复习讲练测
- 基本生活能力评估表BADL使用指南
- 企业文化建设方案模板核心价值观落地
- 政务大模型安全治理框架
- 生态视角下陕南乡村人居环境适老化设计初步研究
- “研一教”双驱:名师工作室促进区域青年教师专业发展的实践探索
评论
0/150
提交评论