全等三角形的判定 (4).doc_第1页
全等三角形的判定 (4).doc_第2页
全等三角形的判定 (4).doc_第3页
全等三角形的判定 (4).doc_第4页
全等三角形的判定 (4).doc_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学目标 1.三角形全等的“边边边”的条件 2了解三角形的稳定性3经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程重点难点 重点:三角形全等的条件 难点:寻求三角形全等的条件教学过程 回顾旧知出示投影片,回忆前面研究过的全等三角形 已知ABCDEF,找出其中相等的边与角_F_E_D_C_B_A 图中相等的边是:AB=DE、BC=EF、AC=DF 相等的角是:A=D、B=E、C=F创设情境,引入新课小明家的衣橱上镶有两块全等的三角形玻璃装饰物,其中一块被打碎了,妈妈让小明到玻璃店配一块回来,请你说说小明该怎么办?要作出全等三角形,是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题 1只给一个条件(一组对应边相等或一组对应角相等),画出的两个三角形一定全等吗?2给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做 三角形一内角为30,一条边为3 cm 三角形两内角分别为30和50 三角形两条边分别为4 cm、6 cm 学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流 结果展示: 1只给定一条边时: 只给定一个角时: 2给出的两个条件可能是:一边一内角、两内角、两边_4cm_2cm_2cm_4cm 可以发现按这些条件画出的三角形都不能保证一定全等 给出三个条件画三角形,你能说出有几种可能的情况吗? 归纳:有四种可能即:三内角、三条边、两边一内角、两内角一边在刚才的探索过程中,我们已经发现三内角不能保证三角形全等下面我们就来逐探索其余的三种情况已知一个三角形的三条边长分别为6 cm、8 cm、10 cm你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1作图方法: 先画一线段AB,使得AB=6 cm,再分别以A、B为圆心,8 cm、10 cm为半径画弧,两弧交点记作C,连接线段AC、BC,就可以得到三角形ABC,使得它们的边长分别为AB=6 cm,AC=8 cm,BC=10 cm 2以小组为单位,把剪下的三角形重叠在一起,发现都能够重合这说明这些三角形都是全等的 3特殊的三角形有这样的规律,要是任意画一个ABC,根据前面作法,同样可以作出一个ABC,使AB=AB、AC=AC、BC=BC将ABC剪下,发现两三角形重合这反映了一个规律: 三边对应相等的两个三角形全等,简写为“边边边”或“SSS” 用上面的规律可以判断两个三角形全等判断两个三角形全等的推理过程,叫做证明三角形全等所以“SSS”是证明三角形全等的一个依据请看例题例1 如图,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架求证:ABDACD 分析:要证ABDACD,可以看这两个三角形的三条边是否对应相等 证明:因为D是BC的中点,所以BD=DC. 在ABD和ACD中, 所以ABDACD(SSS) 生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,而用四根木条钉成的框架,它的形状是可以改变的三角形的这个性质叫做三角形的稳定性所以日常生活中常利用三角形做支架就是利用三角形的稳定性例如屋顶的人字梁、大桥钢架、索道支架等随堂练习1.如图,已知AC=FE、BC=DE,点A、D、B、F在一条直线上,AD=FB要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?解: 要证明ABC FDE,还应该有AB=DF这个条件 DB是AB与DF的公共部分,且AD=BF AD+DB=BF+DB 即 AB=DF2. 如图,AB=AC,AE=AD,BD=CE,求证:AEB ADC。CABDE证明:BD=CE BD-ED=CE-ED,即BE=CD。在AEB和ADC中, AB=ACAE=ADBE=CD AEB ADC3、如图,在四边形ABCD中,AB=CD,AD=CB,求证: A= C. 你能说明ABCD,ADBC吗?DABC 证明:在ABD和CDB中 AB=CD(已知) AD=CB(已知) BD=DB(公共边)ABDACD(SSS) A= C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论