顶杆-A4.dwg
顶杆-A4.dwg

多向固定支架冷冲压工艺及级进模设计【26张CAD图纸+毕业答辩论文】【冲压模具】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图
编号:443253    类型:共享资源    大小:2.72MB    格式:RAR    上传时间:2015-06-23 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
多向 固定 支架 冲压 工艺 级进模 设计 全套 cad 图纸 毕业 答辩 论文 模具
资源描述:

摘  要


本模具采用切废料方式进行冲裁,故模具结构采用冲孔、导正、弯曲、切断的工序设计,排样采用单排横排排列。并采用正装方式设计模具结构,即凹模装在下模部分,凹模采用浮动方式,并装有内部小导柱。首先为了正确控制送料步距采用单侧侧刃定距,在主要位置采用导正销导正精确定位。由于料很薄,冲压速度较快,卸料采用弹性卸料结构,建议弹性材料采用弹簧。废料采用在凹模(下模)向下推出,产品自动向下落下。带料采用自动左右送料装置。

经过详细分析和计算最终排样方案为:侧刃切边,冲导正孔,冲2个非圆孔(废料),冲5个非圆孔(废料),冲2个非圆孔(废料),成形,中间向下弯曲,向上弯曲,最后切断。


关键词:多向固定支架;冲压工艺;排样;级进模



Abstract



The die used to cut waste by punching, punching die structure, guide, bending, cutting process design, arranged in a single row of horizontal nesting. And dress design the die structure die mounted on the lower die part, to die with floating and equipped with a small internal guide post. First order to properly control the feeding step away from the unilateral side of the blade fixed pitch in the main location pilots to precise positioning. The faster the material is thin, stamping, elastic Stripper Stripper structure, it is recommended that an elastic material with spring. Waste using the die (mold) launched down automatically fall down. With material automatically around feeding device.

After a detailed analysis and calculation of the final nesting program: the side edge trimming, pierced pilot hole, punch two non-circular hole (waste), red five non-round hole (waste), two non-circular hole punch (waste) , forming the intermediate bent downwardly bent upwardly, and finally cut.


Key words:Multi-directional mounting bracket;Stamping process;Nesting;Progressive die



目  录

摘  要III

AbstractIV

目  录V

1 绪论1

1.1 本课题的研究内容和意义1

1.2 国内外发展状况2

1.3本课题应达到的要求3

2 冲压工艺设计4

2.1 冲压件简介4

2.2 冲压的工艺性分析5

2.3 冲压工艺方案的确定7

2.3.1 冲压模具类型7

2.3.2 冲压工艺分析和计算7

3 多向固定支架连续模设计10

3.1 模具结构10

3.2 确定其搭边值10

3.3 确定排样图11

3.3.1 送料步距与带料宽度11

3.3.2 排样方案13

3.4 材料利用率计算13

3.5 凸、凹模等刃口尺寸的确定14

3.5.1 侧刃凸、凹模刃口尺寸计算14

3.5.2 导正孔凸、凹模刃口尺寸计算14

3.5.3 梯形废料凸、凹模刃口尺寸计算15

3.5.4 矩形废料Ⅰ凸、凹模刃口尺寸计算17

3.5.5 矩形废料Ⅱ凸、凹模刃口尺寸计算18

3.5.6 矩形废料Ⅲ凸、凹模刃口尺寸计算19

3.5.7 矩形废料Ⅳ凸、凹模刃口尺寸计算20

3.5.8 方形废料凸、凹模刃口尺寸计算21

3.5.9 成形凸、凹模刃口尺寸计算22

3.5.10 向下弯曲凸、凹模刃口尺寸计算23

3.5.11 U型弯曲凸、凹模刃口尺寸计算23

3.5.12 切断凸、凹模刃口尺寸计算25

3.6 冲压力计算26

3.6.1 冲孔部分冲压力26

3.6.2 侧刃冲压力27

3.6.3 成形部分冲压力28

3.6.4 向下弯曲部分冲压力28

3.6.5 U型弯曲部分冲压力28

3.6.6 切断部分冲压力29

3.6.7 总冲压力29

3.7 压力机选用29

3.8 压力中心计算30

3.9 模具主要零部件的结构设计31

3.9.1 凹模结构及设计31

3.9.2 卸料板设计33

3.9.3 凸模固定板设计33

3.9.4 凸模垫板设计34

3.9.5 凹模垫板设计35

3.9.6 侧刃的结构设计35

3.9.7 导正孔凸模结构设计36

3.9.8 梯形凸模结构设计37

3.9.9 矩形凸模Ⅰ结构设计37

3.9.10 矩形凸模Ⅱ结构设计38

3.9.11 矩形凸模Ⅲ结构设计39

3.9.12 矩形凸模Ⅳ结构设计39

3.9.13 方形凸模结构设计40

3.9.14 成形凸模结构设计41

3.9.15 向下弯曲凸模结构设计41

3.9.16 U型弯曲凸模结构设计42

3.9.17 切断凸模结构设计43

3.9.18 前侧导板设计43

3.9.19 后侧导板设计44

3.9.20 U型弯曲凹模镶块设计44

3.9.21 承料板设计45

3.10 标准件确定46

3.10.1 模架确定46

3.10.2 上模螺钉确定47

3.10.3 上模销确定47

3.10.4 下模螺钉确定47

3.10.5 下模销确定47

3.10.6 卸料螺钉确定47

3.10.7 卸料弹簧设计47

3.10.8 凹模浮顶弹簧设计48

3.10.9 凹模浮动卸料螺钉确定48

3.10.10 弯曲弹顶弹簧设计48

3.10.11 侧刃固定螺钉确定49

3.10.12 U型弯曲凸模固定螺钉确定49

3.10.13 小导柱确定49

3.10.14 凹模上小导套确定49

3.10.15 卸料板上小导套确定49

3.10.16 导料板固定螺钉确定49

3.10.17 导料板销确定49

3.10.18 侧刃挡块设计49

3.11 模具闭合高度、校验压力机50

4 结论与展望51

4.1结论51

4.2不足之处及未来展望51

致  谢53

参考文献54


1 绪论


1.1 本课题的研究内容和意义

本次设计是在我们学完了大学的全部基础课,技术基础课以及专业课之后而进行。此次的设计是对大学期间所学各课程及相关的应用绘图软件的一次深入的综合性的总复习,也是一次理论联系实际的训练。该零件的生产离不开模具,只有高效、精密、长寿命的模具才能生产出低成本,高品质的产品。本次毕业任务研究该零件的成形工艺并进行模具设计。

冲压是利用安装在冲压设备上的模具对材料进行施加压力,使其产生分离或塑性变形。从而获得所需零件的一种压力加工方法。冲压通常是指在常温下对材料进行冷变形加工,主要采用板料加工所需零件。所以也叫冷冲压和板料冲压。冲压是材料压力加工和塑性加工的方法之一。隶属于材料成型技术。

冲压所用的模具称作冲模,简称冲模,冲模是将材料批量加工所需冲件的专用工具。冲模在冲压中至关重要。没用符合条件的冲模批量生产冲压就难以进行,没有先进的冲模,先进的冲压工艺就无法进行。冲压工艺与模具冲压设备和冲压材料够成冲压加工的三要素。只有相互结合才能冲出压件。与机械加工及塑性加工相比冲压技术无方面方面还是经济都有独特的优势特点。主要表现如下:

1、冲压加工效率高,操作方便,易于实现机械化和自动化。这是应为冲压是依靠冲压和机械设备来完成的普通压力机的行程次数每分钟可达几十次,高速压力机每分钟可达成百上千次。

2、冲压时由于模具保证了尺寸和形状精度。一般不破坏冲压件的质量,而模具的寿命一般较长,冲压质量稳定,互换性好。

3、冲压可加工尺寸范围较大的和形状较复杂的零件如小到钟表秒表大到汽车重梁和覆盖件等,加上冲压效果的冷变形硬化效果,冲压件的强度和刚度较高。

4、冲压一般没有切削废料生成,材料消耗较少,并不需其他加热设备,因而是一种省料节能的加工方法。

但是冲压加工所用的模具一般具有专用性,有时一个复杂零件需模具才能完成,模具制造的精度要高技术要求高,是技术密集型产品。所以只有批量比较大的时候冲压加工的优点才能充分体现出来。从而获得较好经济效益。

冲压模具是冲压生产必不可少的工艺装备,是技术密集型产品。冲压件的质量、生产效率与生产成本等与模具的设计和制造有直接关系。模具设计与制造的技术水平的高低,是衡量一个国家产品制造技术水平高低的重要标志之一,在很大程度上决定着产品的质量、效益以及新产品的开发能力。通过对此课题的研究主要掌握机械工艺模具设计的一般方法与基本工序。巩固模具设计与模具制造工艺等专业理论知识在生产中的应用;并灵活应用CAD、Pro/E等绘图软件来进行模具设计;懂得如何获得资料、手册查阅。培养自己综合应用理论知识去解决分析实际问题,提高自己的创造力。使我们学生找到自己的不足,同时在检阅资料是了解到本国模具行业与国外发达国家的一些差距,从而找到努力方向,以此激励自己努力学习、天天向上,为自己所从事的事业做出贡献。


内容简介:
编号无锡太湖学院毕业设计(论文)相关资料题目: 多向固定支架冷冲压工艺 及级进模设计 机电 系 机械工程及自动化专业学 号: 0923235学生姓名: 裴永胜 指导教师: 钟建刚(职称:副教授 ) (职称: )2013年5月25日目 录一、毕业设计(论文)开题报告二、毕业设计(论文)外文资料翻译及原文三、学生“毕业论文(论文)计划、进度、检查及落实表”四、实习鉴定表无锡太湖学院毕业设计(论文)开题报告题目: 多向固定支架冷冲压工艺 及级进模设计 信机 系 机械工程及自动化 专业学 号: 0923235 学生姓名: 裴永胜 指导教师: 钟建刚 (职称:副教授 ) (职称: )2012年11月20日 课题来源来自于无锡海诺有限公司,是电器产品上的一个零件。科学依据(包括课题的科学意义;国内外研究概况、水平和发展趋势;应用前景等)(1)课题科学意义模具产业是国家经济基本产业,据统计金属零件粗加工的75%,精加工的50%和塑料零件的90%都是用模具加工完成的。用模具成型的制件所表现出来的高精度,高复杂性,高一致性,高生产率,和低消耗,是其他制造加工方法所无法比拟的。模具工业的发展水平标志着一个国家工业水品及产品开发能力。冲压生产靠模具与设备完成其加工产品,生产率高,操作简便,易于实现机械化与自动化,可以获得其他方法不能或难以制造的复杂零件。冲压产品一般不需要再经机械加工就可使用,冲压加工过程一般也无需加热毛肧。所以冲压加工不但节约金属材料还节约能源,冲压产品一般还具有质量轻和刚性好的特点。冲压模具的设计是冲压生产的基础,是冲压生产必不可少的工艺装备。冲压设计的水平标志着冲压生产工艺的先进性合理性以及生产成本的经济性,他在很大程度上反映了生产技术水平。冲压件的质量,生产效率以及生产成本等,与冲压模具设计与制造有根本关系。 (2)研究状况及其发展前景我国冲压模具的质量和生产工艺水平总体要比国际先进水平低许多,而模具生产周期却要比国际先进水平长很多。产品质量水平低,主要表现在精度,表面粗糙度,寿命及模具的复杂程度上。生产工艺水平低主要表现在加工工艺和加工装备等方面。模具寿命只有国际先进水平的50%左右,大型,精密,技术含量高的冲压模具和精密冲裁模具每年都要花大量资金进口。但一些低档次的冲模以供过于求,市场竞争非常激烈。模具技术的发展是模具工业发展的最关键的一个因素,其发展方向应该为适应模具产品“交货期短”,“精度高”,和“价格低”的要求服务。未来我国模具工业和技术主要发展方向应主要集中在以下几个方面:1模具CAD/CAE/CAM集成化,三维化,智能化2模具检测加工设备向高效精密多功能发展3快速经济制造技术的广泛应用4开发新的模具材料和表面处理技术5模具研磨抛光向自动化智能化发展6模具工业新工艺,新理念,新模式的发展。研究内容本课题主要围绕多项固定支架的连续模设计,重点在于冲压工艺、排样方案的设计。根据所设计的尺寸选择模具的零件和模架的大小。对于学习模具设计的学生具有实践和理论结合的教学意义。拟采取的研究方法、技术路线、实验方案及可行性分析根据多项固定支架的外形,安排冲压工艺,采取先冲孔,后落料的连续模冲压工艺。排样方案选用最普通的直排,实验完全由计算数据决定整套模具装配图及其零件图的优劣,完全以数据为依据进行的实验分析,对于整套设计有完整的设计思路,具体的设计计算完全可以通过查表或者公式书籍可以获得,完全有可行性。研究计划及预期成果研究计划:2012年11月12日-2012年12月2日:按照任务书要求查阅论文相关参考资料,填写毕业设计开题报告书。2012年12月3日-2013年3月1日:工作计划、进度。2013年3月4日-2013年3月15日:查阅参考资料,学习并翻译一篇与毕业设计相关的英文材料。2013年3月18日-2013年4月12日:冲压工艺设计,模具结构设计,刃口尺寸和主要零件结构设计和尺寸计算。2013年4月15日-2013年5月3日:绘制模具装配图和零件图。2013年5月6日-2013年5月25日:工艺文件、毕业论文撰写和修改工作。预期成果:1完成模具装配图:2张(A0或A1);2零件图:主要非标准件零件图(不少于5张);3冷冲压工艺卡片:1张;4设计说明书:1份;5翻译8000以上外文印刷字符或译出约5000左右汉字的有关技术资料或专业文献,内容要尽量结合课题。特色或创新之处冲压加工的产品壁薄重量轻,可以形成形状复杂的零件。生产效率高,生产过程易实现机械化和自动化,适合大批量生产。加工产生的切削少甚至无,零件直接成型,材料利用率高。已具备的条件和尚需解决的问题已具备的条件:拥有模具设计的一定基础,知道模具结构,能够根据模具所需选择需要的零件。拥有一些关于模具设计方面的资料。尚需解决的问题:对设计的每个环节考虑不是很周全。连续模结构因素设计连续模时,要准确掌握加工速度、冲材材质、冲压力、工位数、模具间隙等各主要因素,否则就不能发挥模具的效用和综合加工方法,特别是在高速冲压精密件时,模具损伤多,工件精度低,得不到满意效果。指导教师意见 指导教师签名:年 月 日教研室(学科组、研究所)意见 教研室主任签名: 年 月 日系意见 主管领导签名: 年 月 日英文原文 Improving Performance of Progressive DiesProgressive die stamping is a cost-effective and safe method of producing components. Careful design and construction of dies will ensure optimum performance.A progressive die performs a series of fundamental sheet metal operations at two or more stations in the die during each press stroke. These simultaneous operations produce a part from a strip of material that moves through the die. Each working station performs one or more die operations, but the strip must move from the first station through each succeeding station to produce a complete part. Carriers, consisting of one or more strips of material left between the parts, provide movement of the parts from one die station to the next. These carrier strips are separated from the parts in the last die station.There are six elements that should be addressed when designing and building a progressive die to maximize its performance: Interpreting the part print, Starting material into the die, Part lifters and part feeding, Flexible part carriers, Upper pressure pads, and Drawn shells.Interpreting the Part PrintThe first step in the proper design of a progressive die is to correctly analyze the part print. The tool designer must interpret the print to determine the function of the part by looking for such things as the type of material, critical surfaces, hole size and location, burr location, grain direction requirements, surface finish and other factors.The die designer must understand the part well, particularly if it has irregular shapes and contours. However, modern computer-drawn prints make this more difficult because computer-drawn part data can be downloaded directly to the die-design computer. As a result, the designer may not become thoroughly familiar with important part features.Also, many computer-drawn parts are more difficult to understand, because often, only one surface is shown and it may be the inside or outside surface. Computer drawings often show all lines, including hidden features, as solid lines instead of dotted lines. This leads to interpretation errors, which in turn leads to errors in the building of the die.To better understand complex part shapes, it is helpful to build a sight model of the part using sheet wax, rubber skins or wood models. Dimensional accuracy is not critical for these models, as they are used primarily to visualize the part. Rubber skins and sheet wax also can be used to develop preform shapes and to develop the best positions for the part as it passes through each die operation in the progressive die.Starting Material in the DieCare must be taken to ensure that the strip is started correctly into the die. Improper location of the lead end of the strip will do more damage to the die in the first 10 strokes of the press than the next 100,000 strokes. Lead-in gauges must have large leads and a ledge to support the lead end of the coil strip when it is inserted into the die. Large leads on the gauges are important so that the die setup person does not have to reach into the die, as well as for minimizing the time required to start a new strip into the die. Also, one gauge should be adjustable to compensate for variation in strip width,.The position of the lead edge of the strip is critical for the first press stroke, and must be determined for every die station to ensure that piercing punches do not cut partial holes in the lead edge. This could cause punch deflection or result in a partial cut with trimming punches, which can result in an unbalanced side load as the strip passes through the die. Any of these conditions can result in a shift of the punch-to-die relationship that may cause shearing of the punches.Improper location of the lead edge of the strip also can result in an unbalanced forming or flanging condition that can shift the upper die in relation to the lower die. Heels should be required to absorb this side load, particularly when forming thick materials.A pitch notch and pitch stop can provide a physical point to locate and control the lead edge of the strip. Brass tags or marker grooves also can provide a visual location, but these are not as accurate or as effective as a pitch notch stop. The press can be prevented from operating with either a short feed or over feed by mounting the pitch stop on a pivot and monitoring it with a limit switch.Part Lifters and Part FeedingProgressive dies often require the strip to be lifted from the normal die work level to the feed level before strip feeding takes place. This can vary from a small amount-to clear trim and punching burrs-to several inches to allow part shapes to clear the die.Normally, all lifters should rise to the same height so that the strip is supported in a level plane during forward feed. The strip must not sag between lifters; otherwise parts will be pulled out of their correct station location spacing. Bar lifters provide good support and are better than spring pins or round lifters notched on one side of the strip.Often, a good bar lifter system allows higher press speeds because feed problems are eliminated. Although the initial cost is more than round lifters, performance is better and setup time is reduced.As the strip is started into the lead-in gauges, the strip should be able to feed automatically through all the following die stations without requiring manual alignment in each set of gauges and lifters. The strip also must be balanced on the lifters so that it does not fall to one side during feed. A retainer cap can be mounted on the top of the outside bar lifters. This produces a groove that captures the strip during feed and prevents strip buckling.Gauging and lifter conditions can be simulated during die design by cutting a piece of transparent paper to the width of the strip. The lead edge of the paper is placed over the plan view of the die design at the location the strip will be for the first press stroke. Then the paper is marked with all of the operations that will be performed at the first die station-for example, notching and punching. The paper strip then is moved to the second station on the drawing and the operations for both the first and second stations are marked. This process is repeated through all the die stations to illustrate what the real part strip will look like when it is started into the die and helps determine the adequacy of gauges and lifters.To transport the strip from one station to the next in a progressive die, some material must be left between the parts on the strip. This carrier material may be solid across the width of the strip, or may be one or more narrow ribbons of material, see part carriers sidebar.Many parts require the edge of the blank to flow inward during flanging, forming or drawing operations. This may require the carrier to move sideways or flex vertically, or both, during the die operation. A flexible loop must be provided in the carrier to allow flexing and movement of the blank without pulling the adjacent parts out of position, Fig. 2.Another concern is the vertical breathing of parts in die stations during the closing and opening of the die in the press stroke. For example, vertical breathing takes place between the draw stations of parts requiring more than one draw to complete the part, Fig. 3. Vertical breathing also occurs when a flange is formed up in a progressive die station that is adjacent to stations that use upper pressure pads to hold the adjacent parts down.It is important to consider the flexing of the carrier during the upstroke of the press as well as during the downstroke because the action may be different. This can be simulated in the design stage by making an outline of the cross-section of the part, the pressure pads and the stationary-mounted steels on separate sheets of paper and then placing these sheets on top of each other in layers over the die section views. This will show the relative position of the part as the die closes and during the reverse action as the die ram opensPart CarriersA common feature in all progressive stamping dies is the material that transports the parts from station-to-station as it passes through the die. This material is known by various terms, such as carrier, web, strip, tie, attachment, etc. In this instance, we will use the term carrier, of which there are five basic styles:Solid carrier-All required work can be accomplished on the part without preliminary trimming. The part is cut off or blanked in the final operation.Center carrier-The periphery of the part is trimmed; leaving only a narrow tie near the middle of the part. This permits work to be performed all around the part. A wide center carrier permits trimming only at the sides of the part.Lance and carry at the center-The strip is lanced between parts, leaving a narrow area near the center to carry the parts. This eliminates scrap material between parts.Outside carriers-The carriers are attached to the sides of the part so that work can be done to the center of the part.One side carrier-The part is carried all the way or part of the way through the die with the carrier on one side only. This permits work on three sides of the part.The type or shape of the carrier will vary depending on what the part requires as it progresses from station to station in the die. The stock width may be left solid if no part material motion is required during die closure or it can be notched to create one, two or even three carriers between the partsThe carriers can be straight, form a zig-zag pattern or have loops between the parts depending on where attachment points to the part are available or to accommodate whatever clearance may be required by the die tooling. As the part is formed, flanged or drawn into a shell, the carrier may have to move sideways or up and down as the die closes and opens.When die operations cause the carrier to move, it usually will be required to flex or stretch. Regardless of carrier flexing, their key function is to move the parts close enough to the next station so that pilots, gauges and locators can put the parts into their precise location as the die closes.If the carrier acquires a permanent stretch, the parts may progress too far to fit on the next station, or in the case that the die has two carriers, one carrier may develop permanent stretch with no stretch in the other carrier. This will create edge camber in the strip, causing it to veer to one side. This results in poor part location.A stretched carrier can be shortened to its correct length by putting a dimple in the carrier. If a center carrier or one-sided carrier develops camber, the strip can be straightened by dimpling or scoring one side of the carrier. Construct the dimple and scoring punches so that they are easily adjusted sideways for position and vertically for depth.as it is delivered from the coil can cause the strip to bind in the running gauges that guide the material during the feed cycle. This binding may cause the carriers to buckle, which results in short feeds. It often helps to relieve the guide edge of the gauges in between stations and have tighter gauge control at the work station.Another option is to eliminate camber by trimming both sides of the material in the beginning of the die. By adding stops at the end of these trim notches they can be used as pitch control notches to prevent progression overfeed.Optimum Carrier ProfileThe optimum carrier profile is affected by some of the following conditions: Space available between parts: Try to keep the carriers within the stock width and pitch required for the blank. If this is not possible then the designer must add to the width and/or the progression of the material to provide adequate carrier room. Attachment points to the part: If two carriers are used, try to keep the profile and length of the carriers somewhat the same so that any effect of carrier flexing is close to being balanced. Clearance for punch and die blocks: Punch blocks that extend below the stock or die blocks that extend above the stock when the die closes will require clearance in relation to the parts and the carriers. If a loop of the carrier interferes with blocks it may be possible to form the loop vertical to provide clearance. Thickness of the material: Large parts with thin material may require stiffener beads to add strength to the carrier for stock feeding. Another stiffening and strip guiding method is to lance and flange the edge of the stock, which also can be used as a progression notch. The total of the strip: Heavy parts in long dies require more force to push the strip through the die. However, the weight is usually thick material, and thick material is stiffer than thin material. As a rule of thumb, flexible carriers for materials of 0.020 in. to 0.060 in. are about 3/16 in. to 5/16 in. wide. For stock thicknesses above and below this thickness range, carrier width is a best judgment call. Depending on all the die factors involved, under normal conditions the carriers should be a consistent width for their full length, but especially in the area of flexing. Since nearly every stock feeder pushes material through the die rather than pull the material, the carrier must be strong enough to push the parts all the way through the die.A detection switch actuated by a complete feed of the strip at the exit of the die can detect buckling. If action of the die during closure or opening of the press requires the carriers to flex, design the carrier with loops that are long enough to flex without breaking, but still strong enough to feed all the parts to their full progression. If two flex carriers are not strong enough to feed the strip, consider three carriers.Try to make the radii in flex loops as large as practical. Sharp corners or small radii will concentrate stress of flexing, making it the first point to fracture during flexing of the carrier. Also avoid any steps or nicks in the edges of the carrier.Upper Pressure PadsBecause of size or function, many progressive dies require two or more pressure pads in the upper die. Each may require a different travel distance to perform the work in the individual die station, such as trimming or forming or drawing.However, the upper pressure pads often are used to push the material lifters down by pressing against the strip, which pushes the lifters down. In this situation, all of the pressure pads that push material lifters down should have the same travel distance. If the upper pressure pads travel different distances, the strip will not be pushed down evenly. This can pull adjacent parts out of the progression, making it difficult to locate the parts in their proper station position after the feed cycle.If the part requires a flange to be formed up, the part carrier must have a flex loop to allow for vertical breathing of the part or provide a pressurized punch/pad with the same travel as the other pressure pads. The force required by the pressurized punch/pad has to be adequate to form the flanges up during the downstroke while the punch/ pad is in the extended position. This keeps the strip from breathing vertically as it is pushed down from the feed level to the normal work level.When the strip reaches the work level, the pressurized punch/pad stops its downward motion while the upper die continues down for punching, trimming, down flanging and other operations. Springs or nitrogen cylinders can be used for pressure in these pressurized punch/ pad stations, but they must have enough preload force to form the flanges up and to collapse the lower gripper pad before the upper punch/ pad recedes中文译文 提高级进模性能级进模是一种成本低廉且安全的零件制造方法,. 精心设计模具结构可确保最佳性能。一副级进模在一次冲压动作中可在模具不同工位进行不同的冲压操作。这些在通过模具的带料上同时进行的冲压动作制造出零件。每个工位可进行一个或多个操作,但要生产出完整的零件条料必须经过每一个工位。而零件依靠零件之间的载体输送到各个工位,并在最后一个工位进行切除。为了使模具性能最佳,在设计和制造级进模具时,必须考虑以下五个方面: 研究零件 送料方式 零件顶出和送进 设计零件载体 压料装置零件排样设计级进模首先必须正确地理解零件图,必须考虑材料、重要表面、孔的尺寸和和位置、毛刺方向、材料纤维方向、表面粗糙度和其他因素。模具设计要求设计者必须对零件有透澈的了解,特别是对形状和轮廓不规则的零件。然而,现代计算机绘图使得零件数据可以直接下载到设计者的电脑上,使得设计者可能不熟悉零件重要特性。另外,因为计算机绘图经常出现这种情况,图上只显示一个面,可能是内表面也可能是外表面,使得很多计算机绘制的图形难以看懂。电脑绘图经常显示所有的线条,包括隐藏部分,为实线而非虚线,这导致错误,进而导致模具结构错误。为了更好地看懂复杂零件外形,可用蜡板,橡胶皮或者木板做成具有零件某个视图方向上的外形的模型。模型不要求精确的尺寸,其主要是用来形象地表示零件形状。也可以用这些模型来决定应该在级进模的哪个工位成形零件哪个部分的外形。材料送进必须确保条料准确地进入模具。如果条料导向错误,那么最初的10次冲压动作对模具造成的损伤可能比接下来的100000次冲裁还大。当卷料送进入模具时必须顺利导向且有限位装置。良好的导向能力时非常重要的,因为这样操作人员就不必将手伸入模具,而且可以缩短接上下一卷材料所需的时间。除此之外,导向装置必须时可调的以适应条料宽度的变化。对第一次冲裁而言条料送进位置非常重要,必须确定条料在每个工位的送进位置的以保证凸模不冲偏,会导致冲头变形或切不完整,可能造成条料不平衡送进时单侧受力。任一种可能都会造成凸凹模错位使得冲头受剪切损坏。条料送进不当成形时可能导致偏载或者边缘卷起,影响上下模之间的相对位置。垫块必须能够承受这些载荷,特别是成形较厚材料时更应如此。一个步距的凹口或止动销可作为定位点控制条料送进位置,黄铜标签或标记槽也提供了视觉定位 ,但是这些都不够准确,不够有效。通过在将步距限位销安装在支点上,并用限位开关监控以防止条料送进不到位或送进过多以保护压力机。零件顶出和送进级进模通常要求将条料抬高到距模具工作位置一定高度水平线上,使得条料送进到指定位置,而与清理废料和毛刺或者利用制件外形清理模具无关。正常情况下,所有抬高装置必须上升到同一高度使条料在送进过程中保持水平。条料不能由凹陷,否则零件会被从正确位置拔出。相对于安排在条料侧面的弹簧销和球头抬料销,杆式抬料装置效果更好。多数时候一旦材料送进问题解决,则要求杆式抬料装置可以承受较高的冲压速率。虽然成本比球头抬料装置高,但性能要好的多,而且安装时间也缩短了。一旦条料进入导料槽,条料就必须能够自动送进到所有后续工位而不需要人工在每个导向位置或抬料处对准导向。而且条料在抬料杆上应该保持平衡不在送进是偏向一侧。在抬料杆头部应装上一个金属帽盖,形成一个凹槽,在条料送进时拖住条料不使其弯曲变形。送进步距测量和抬料装置的设置方案可通过在模具设计时用一块与条料等宽度的透明纸板模拟条料来确定。纸板边缘位于根据模具设计方案确定的第一工位冲裁时条料应送进的位置,然后在纸板上标示模具第一个工位所要进行的的所有操作比如:切槽和冲孔。接着将纸带移动到第二个拉深工位,并在纸板上标示该工位进行的操作。在每个工位重复该操作则可在纸带上显示出送到最后工位时条料的形状,在根据条料形状设置定距和抬料装置。为将条料从一个工位运送到下一个工位,必须在条料上的零件之间留下部分材料作为运送条料前进的载体。这些载体可以是条料条料间的十字形部分或者由几条窄条带,如边侧载体。零件在进行翻边,成形或者拉深操作时要求边缘材料向内流动,这就需要载体在模具工作期间能够横向移动或垂直收缩,或两者都有。需要给载体提供足够的活动空间,使得载体收缩和移动时不会将相邻的零件拽离原来位置另一个需要关注的问题是材料在压力机开合模具期间的垂直运动。如,有的零件需要几次才能拉深成形,在这些工位之间材料就发生垂直流动。与压力机下行时相同,必须注意压力机上行时要保证载体运动灵活,因为载体向上运动可能会与向下运动有所不同。可在模具设计阶段做零件轮廓,压边圈和固定钢板的轮廓,然后按顺序放在模具断面视图之上,将这些零件根据相对之间的关系向下运动就可以模拟冲压过程中上模是怎样合模的,可显示出开合模时零件之间的相对位置。零件载体所有级进模的共同点是零件靠坯料上的材料运送到模具中的各个工位,这些材料有各种不同的术语称呼,如载体,筋,条带,连接带等等。在本例中,我们一概称之为载体,其主要有以下五种形式:原载体所有操作可在零件上完成,不需要事先切出载体。中间载体先切出零件形状,留下靠近中间的一段条带。适用与在周边进行切除工序的零件。如果载体宽度较大,允许在单侧切出零件。等宽双侧载体条带对称分布在零件两侧,用一段窄长的条料运送零件,适用于须切除零件之间材料的零件。边料载体载体在零件的边缘,适用于在中间成形的零件。单侧载体载体位于零件一侧,运送零件到最后一个工位或中间工位,可在零件三个方向上成形。根据零件在级进工位
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:多向固定支架冷冲压工艺及级进模设计【26张CAD图纸+毕业答辩论文】【冲压模具】
链接地址:https://www.renrendoc.com/p-443253.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!