




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
14.1.4整 式 的 乘 法(三)太和县桑营镇中心学校 刘琦教学设计表学科 数学 授课年级 七年级 学校 桑营中学 教师姓名 刘琦 章节名称整式的乘法(三)计划学时一课时学习内容分析1.经历探索多项式与多项式相乘的运算法则的过程,会进行简单的多项式与多项式相乘运算(其中多项式相乘仅限于一次式相乘).2.理解多项式与多项式相乘运算的算理,体会乘法分配律的作用和转化的思想.学习者分析学生在以前对乘法运算掌握的基础上,进一步的掌握多项式与多项式相乘的法则,应该是很容易接受的,并会对此进行应用。教学目标课程标准:理解多项式与多项式相乘运算的算理,体会乘法分配律的作用和转化的思想.知识与技能:1.发展有条理的思考及语言表达能力.2.培养学生转化的数学思想过程与方法:活动探究法.情感、态度与价值观:在体会乘法分配律和转化思想的过程中,获得成就感,培养学习数学的兴趣和信心.教学重点及解决措施多项式与多项式相乘的法则及应用.通过长方形面积公式的应用及乘法分配率的应用来让学生掌握此重点。教学难点及解决措施1.灵活地进行整式乘法的运算.2.通过学生随意拼图来突破难点教学设计思路一.创设问题情景,引入新课二.通过拼更大的长方形,对比同一面积的不同表示方式,使学生对多项式与多项式的乘法有一个直观认识,再从代数角度去探索多项式与多项式乘法的运算法则三.练一练四.课时小结五.课后作业 依据的理论两个小长方形的面积等于拼成的大长方形的面积及乘法的分配律信息技术应用分析知识点学习水平媒体内容与形式使用方式使用效果多项式与多项式相乘的法则及应用.会进行简单的多项式与多项式相乘运算(其中多项式相乘仅限于一次式相乘).理解多项式与多项式相乘运算的算理,体会乘法分配律的作用和转化的思想.下列形状的纸卡每一种若干张. 教师出示课件,引导学生拼图激发学生的学习兴趣,从多角度刺激学生对法则的理解和应用教学过程(可续页)教学环节教学内容所用时间教师活动学生活动设计意图一.创设问题情景,引入新课导入新课即多项式乘以多项式5分钟师利用下面长方形卡片中的任意两个,拼成一个更大的长方形. 图119生用上面卡片中的任意两个拼出如下图形: 图120师你能用不同的形式表示上面四个图形的面积吗?生图A的面积可以表示为(n+a)m,也可以表示为nm+am;图B的面积可以表示为n(m+b),也可以表示为nm+nb;图C的面积可以表示为b(n+a),也可以表示为bn+ab;图D的面积可以表示为a(m+b),也可以表示为am+ab.生由上面的同一图形不同的面积表示方程可得:(n+a)m=nm+am;n(m+b)=nm+nb;b(n+a)=bn+ab;a(m+b)=am+ab.师我们观察上面四个式子可以发现,等式的左边是单项式乘以多项式,而它们正是单项式与多项式相乘的一个几何解释.如果再把A、B、C、D四个图形进一步摆拼,会得到比它们更大的长方形.做一做,试一试,也许你会有更惊人的发现.通过拼更大的长方形,对比同一面积的不同表示方式,使学生对多项式与多项式的乘法有一个直观认识,再从代数角度去探索多项式与多项式乘法的运算法则.生利用A和C可以拼出下列长方形:对生利用B和D也可以拼出如图121所示的长方形.图121师你能用不同的形式表示这个图形的面积吗?并进行比较.学生口答并思考二把知识的学习从动手操作上升到探索规律20分钟生上面的图形可以看成长为(m+b)、宽为(n+a)的长方形,其面积是(m+b)(n+a);生上面的图形还可以看成图A和图C两个图形组成的,其面积是m(n+a)+b(n+a);生还可以看成是四个小长方形的组合,其面积是mn+ma+bn+ba.师比较后,你能发现什么?生这三种方法表示同一图形的面积.因此,它们是相等的,即(m+b)(n+a)=m(n+a)+b(n+a)=mn+ma+bn+ba.师如果从代数运算的角度解释上面的等式成立吗?生成立.在(m+b)(n+a)中,可以把其中的一个多项式看成一个整体,例如把(n+a)看成一个整体,利用乘法分配律,得,这时再利用单项式与多项式相乘的运算法则,就可得到 .师这位同学从代数运算的角度解释这个等式,解释的很清楚.我们接着来分析上面的等式.(m+b)(n+a)是多项式与多项式相乘,这正是我们要学习的整式乘法中的最后一个问题.而同学们能借用前面知识将问题转化成单项式与多项式的乘法,说明同学们已能恰当地利用转化的思想,解决当前问题.实际上,多项式与多项式相乘,可以把其中的一个多项式看成一个整体,再运用单项式与多项式相乘的方法进行运算.我们前面拼图,然后对同一面积用不同的形式表达所得出的等式可以作为多项式与多项式相乘的几何解释.结合上面的代数解释和几何解释,你能总结出多项式与多项式相乘的运算法则吗?生多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.师下面我们就来看几个多项式与多项式相乘的整式乘法运算.出示投影片(1.6.3 A)三对新知识的应用10分钟例1计算:(1)(1x)(0.6x);(2)(2x+y)(xy);(3)(xy)2;(4)(2x+3)2;(5)(x+2)(y+3)(x+1)(y2).分析:在做的过程中,要明白每一步算理.因此,不要求直接利用法则进行运算,而要利用乘法分配律将多项式与多项式相乘转化为单项式与多项式相乘.解:(1)(1x)(0.6x)=(0.6x)x(0.6x)=0.6x0.6x+x2=0.61.6x+x2或(1x)(0.6x)=10.61x0.6x+xx=0.6x0.6x+x2=0.61.6x+x2(2)(2x+y)(xy)=2x(xy)+y(xy)=2x22xy+xyy2=2x2xyy2或(2x+y)(xy)=2xx2xy+xyy2=2x2xyy2(3)(xy)2=(xy)(xy)=x(xy)y(xy)=x2xyxy+y2=x22xy+y2或(xy)2=(xy)(xy)=xxxyxy+yy=x22xy+y2(4)(2x+3)2=(2x+3)(2x+3)=2x(2x+3)+3(2x+3)=4x26x6x+9=4x212x+9或(2x+3)2=(2x+3)(2x+3)=(2x)(2x)+3(2x)+3(2x)+9=4x212x+9(5)(x+2)(y+3)(x+1)(y2)=(xy+3x+2y+6)(xy2x+y2)=xy+3x+2y+6xy+2xy+2=5x+y+8评注:(3)(4)题利用乘方运算的意义化成多项式与多项式的乘法运算.(5)整式的混合运算,一定要注意运算顺序.练一练出示投影片(1.6.3 B)1.计算:(1)(m+2n)(m2n);(2)(2n+5)(n3);(3)(x+2y)2;(4)(ax+b)(cx+d).2.试一试,计算:(a+b+c)(c+d+e)解:1.(1)(m+2n)(m2n)=mmm2n+2nm2n2n=m22mn+2mn4n2=m24n2(2)(2n+5)(n3)=2nn32n+5n53=2n26n+5n15=2n2n15(3)(x+2y)2=(x+2y)(x+2y)=x2+2xy+2xy+4y2=x2+4xy+4y2(4)(ax+b)(cx+d)=axcx+axd+bcx+bd=acx2+adx+bcx+bd2.(a+b+c)(c+d+e)=a(c+d+e)+b(c+d+e)+c(c+d+e)=ac+ad+ae+bc+bd+be+c2+cd+ce四.课时小结5分钟这节课我们通过拼图游戏,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年管理学:人力资源管理师能力考核试题(附含答案)
- 摄影艺术与技法课件
- 摄影基本知识培训心得
- 软件技术基础试题及答案
- 2025终止合同通知书
- 2025企业汽车租赁合同范本
- 2025年农业用地流转合同签订方式
- 搭配的学问课件
- 2025年9月版用工合同(合作协议书)范本(可规避风险)
- 澳门入籍面试题研究报告:不同行业背景下的职业素养考察
- 人力资源顾问服务合同范本正规范本(通用版)
- 电土施表1-6 专业绿色施工、节能减排管理措施和实施记录
- 野生植物资源学习题及参考答案
- 有限空间作业安全管理协议
- 跨省户口网上迁移告知单
- 中职《语文》课程思政开发与建设方案
- 新生儿遗传代谢病筛查阳性儿管理课件
- 校服采购投标方案
- 临沧市市级单位遴选(选调)考试试卷真题及答案2022
- 工程质量管理处罚制度细则
- 2023年湖北孝感市安陆市属国有企业招聘笔试参考题库附带答案详解
评论
0/150
提交评论