【全程复习方略】(文理通用)高三数学一轮复习 8.3圆的方程精品试题(1).doc_第1页
【全程复习方略】(文理通用)高三数学一轮复习 8.3圆的方程精品试题(1).doc_第2页
【全程复习方略】(文理通用)高三数学一轮复习 8.3圆的方程精品试题(1).doc_第3页
【全程复习方略】(文理通用)高三数学一轮复习 8.3圆的方程精品试题(1).doc_第4页
【全程复习方略】(文理通用)高三数学一轮复习 8.3圆的方程精品试题(1).doc_第5页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆 的 方 程(45分钟100分)一、选择题(每小题5分,共40分)1.(2014湖州模拟)若过点a(a,a)可作圆x2+y2-2ax+a2+2a-3=0的两条切线,则实数a的取值范围是()a.(-,-3)b.1,32c.(-,-3)1,32d.(-3,+)【解析】选c.圆的方程可化为(x-a)2+y2=3-2a.过点a(a,a)可作圆的两条切线,所以a2+a2-2a2+a2+2a-30,3-2a0,解之得a-3和1a0,即a2.因为圆关于直线y=x+2b对称,所以圆心在直线y=x+2b上,即-3=1+2b,解得b=-2,所以a-b0,且b=1.又因为圆和直线4x-3y=0相切,所以|4a-3|5=1,即|4a-3|=5,因为a0,所以a=2.所以圆的方程为(x-2)2+(y-1)2=1.7.(2014温州模拟)已知点p(x,y)在直线x-y-1=0上运动,则(x-2)2+(y-2)2的最小值为()a.12b.22c.32d.322【解析】选a.因为点(2,2)到直线x-y-1=0的距离为|2-2-1|2=22,所以(x-2)2+(y-2)2的最小值为222=12.8.(2013衢州模拟)圆心在曲线y=3x(x0)上,且与直线3x+4y+3=0相切的面积最小的圆的方程为()a.(x-2)2+y-322=9b.(x-3)2+(y-1)2=1652c.(x-1)2+(y-3)2=1852d.(x-3)2+(y-3)2=9【解析】选a.由题意设圆心为x,3x,则半径r=3x+12x+353,当且仅当x=2时取等号,所以半径最小时圆心为2,32,圆的方程为(x-2)2+y-322=9.二、填空题(每小题5分,共20分)9.(2014宝鸡模拟)已知圆的方程为x2+y2-6x-8y=0,a1,a2,a11是该圆过点(3,5)的11条弦的长,若数列a1,a2,a11成等差数列,则该等差数列公差的最大值是.【解析】容易判断,点(3,5)在圆内部,过圆内一点最长的弦是直径,过该点与直径垂直的弦最短,因此,过(3,5)的弦中,最长为10,最短为46,故公差最大为10-4610=5-265.答案:5-26510.已知x,y满足x2+y2=1,则y-2x-1的最小值为.【思路点拨】可将y-2x-1看成圆x2+y2=1上的点(x,y)与点(1,2)连线的斜率,进而转化为直线与圆相交或相切.【解析】y-2x-1表示圆上的点p(x,y)与点q(1,2)连线的斜率,所以y-2x-1的最小值是直线pq与圆相切时的斜率.设直线pq的方程为y-2=k(x-1)即kx-y+2-k=0.由|2-k|k2+1=1得k=34,结合图形可知,y-2x-134,故最小值为34.答案:3411.设二次函数y=13x2-43x+1与x轴正半轴的交点分别为a,b,与y轴正半轴的交点是c,则过a,b,c三点的圆的标准方程是.【思路点拨】先由已知求出a,b,c三点坐标,再根据坐标特点选出方程,求方程.【解析】由已知三个交点分别为a(1,0),b(3,0),c(0,1),易知圆心横坐标为2,则令圆心为e(2,b),由|ea|=|ec|得b=2,半径为5,故圆的方程为(x-2)2+(y-2)2=5.答案:(x-2)2+(y-2)2=5【加固训练】设圆c同时满足三个条件:过原点;圆心在直线y=x上;截y轴所得的弦长为4,则圆c的方程是.【解析】由题意可设圆心a(a,a),则22+22=2a2,解得a=2,r2=2a2=8.所以圆c的方程是(x+2)2+(y+2)2=8或(x-2)2+(y-2)2=8.答案:(x+2)2+(y+2)2=8或(x-2)2+(y-2)2=812.(能力挑战题)已知动圆的圆心c在抛物线x2=2py(p0)上,该圆经过点a(0,p),且与x轴交于两点m,n,则sinmcn的最大值为.【解析】由题意,设c(x0,y0),则c的方程(x-x0)2+(y-y0)2=x02+(y0-p)2.把y=0和x02=2py0代入整理得x2-2x0x+x02-p2=0.设m,n的横坐标分别为x1,x2,则x1=x0-p,x2=x0+p.所以|mn|=|x1-x2|=2p.因为|cm|=|cn|=(x0-x1)2+y02=p2+y02,所以cosmcn=-2p2+2y022p2+2y02=1-2p2p2+y02,所以-1cosmcn1.所以00恒成立,无论m为何值,方程总表示圆.圆心坐标2-m2,-m+12,圆的半径为r=122m2-6m+13.圆的半径最小时,面积最小,r=122m2-6m+13=122m-322+172344,当且仅当m=32时,等号成立,此时面积最小.所以当圆的面积最小时,圆心坐标为14,-54,半径r=344.(2)圆心到坐标原点的距离d=122m-122+92324.当且仅当m=12时,距离最近.此时,圆心坐标为34,-34,半径r=424.15.(能力挑战题)(2014台州模拟)已知以点ct,2t(tr,t0)为圆心的圆与x轴交于点o,a,与y轴交于点o,b,其中o为原点.(1)求证:aob的面积为定值.(2)设直线2x+y-4=0与圆c交于点m,n,若|om|=|on|,求圆c的方程.(3)在第(2)题的条件下,设p,q分别是直线l:x+y+2=0和圆c上的动点,求|pb|+|pq|的最小值及此时点p的坐标.【解析】(1)由题设知,圆c的方程为(x-t)2+y-2t2=t2+4t2,化简得x2-2tx+y2-4ty=0,当y=0时,x=0或2t,则a(2t,0);当x=0时,y=0或4t,则b0,4t,所以saob=12|oa|ob|=12|2t|4t|=4为定值.(2)因为|om|=|on|,则原点o在mn的中垂线上,设mn的中点为h,则chmn,所以c,h,o三点共线,则直线oc的斜率k=2tt=2t2=12,所以t=2或t=-2.所以圆心c(2,1)或c(-2,-1),所以圆c的方程为(x-2)2+(y-1)2=5或(x+2)2+(y+1)2=5,由于当圆的方程为(x+2)2+(y+1)2=5时,直线2x+y-4=0到圆心的距离dr,此时不满足直线与圆相交,故舍去.所以圆c的方程为(x-2)2+(y-1)2=5.(3)点b(0,2)关于直线x+y+2=0的对称点为b(-4,-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论