Equal channel angular extrusion of flat products.pdf

水泵叶轮冲压工艺与模具设计[3套模具]【36张CAD图纸+毕业答辩论文】【冲压模具】

收藏

资源目录
跳过导航链接。
水泵叶轮冲压工艺与模具设计[3套模具]【全套CAD图纸+毕业答辩论文】【冲压模具】.rar
[A4-034]冲压模-水泵叶轮冲压工艺与模具设计[3套模具]
说明书.doc---(点击预览)
翻边成形顶件块-A4.dwg---(点击预览)
翻边成形模装配图-A1.dwg---(点击预览)
翻边成形模柄-A4.dwg---(点击预览)
翻边成形打杆-A4.dwg---(点击预览)
翻边成形定位块-A4.dwg---(点击预览)
翻边成形垫板-A4.dwg---(点击预览)
翻边成形卸料螺杆-A4.dwg---(点击预览)
翻边成形凹模垫块-A4.dwg---(点击预览)
翻边成形凹模-A4.dwg---(点击预览)
翻边成形凸模固定板-A4.dwg---(点击预览)
翻边成形凸模-A4.dwg---(点击预览)
翻边成形下模座-A3.dwg---(点击预览)
翻边成形上模座-A3.dwg---(点击预览)
目录+摘要.doc---(点击预览)
开题报告.doc---(点击预览)
工艺卡.doc---(点击预览)
切槽模装配图-A1.dwg---(点击预览)
切槽模柄-A4.dwg---(点击预览)
切槽定位块-A4.dwg---(点击预览)
切槽垫板-A4.dwg---(点击预览)
切槽卸料板-A4.dwg---(点击预览)
切槽凹模-A4.dwg---(点击预览)
切槽凸模固定板-A4.dwg---(点击预览)
切槽凸模-A4.dwg---(点击预览)
切槽下模座-A3.dwg---(点击预览)
切槽上模座-A3.dwg---(点击预览)
冲孔凹模-A4.dwg---(点击预览)
冲孔凸模-A4.dwg---(点击预览)
修边凹模-A4.dwg---(点击预览)
修边凸模-A4.dwg---(点击预览)
修边冲孔装配图-A1.dwg---(点击预览)
修边冲孔模柄-A4.dwg---(点击预览)
修边冲孔推件快-A4.dwg---(点击预览)
修边冲孔打杆-A4.dwg---(点击预览)
修边冲孔打件板-A4.dwg---(点击预览)
修边冲孔垫板-A4.dwg---(点击预览)
修边冲孔凸模固定板-A4.dwg---(点击预览)
修边冲孔上模座-A3.dwg---(点击预览)
任务书.doc---(点击预览)
下模座-A3.dwg---(点击预览)
PPT答辩稿.ppt---(点击预览)
英文翻译
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:443498    类型:共享资源    大小:3.24MB    格式:RAR    上传时间:2015-06-24 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
水泵 叶轮 冲压 工艺 模具设计 模具 全套 cad 图纸 毕业 答辩 论文
资源描述:

目  录

摘  要III

AbstractIV

第一章 前 言1

1.1选题背景1

1.2 课题相关调研1

1.2.1  本课题及相关领域的国内外现状及发展1

1.2.2  模具技术的发展现状2

第二章 工艺分析计算3

2.1  零件及其冲压工艺性分析3

2.2 确定工艺方案4

2.3主要工艺参数计算7

2.3.1 落料尺寸7

2.3.2拉深道次及各道次尺寸9

第三章 模具设计14

3.1 落料、拉深复合模14

3.1.1模具结构14

3.1.2 模具工件部分尺寸及公差计算15

3.2修边冲孔模17

3.2.1模具结构18

3.2.2 模具工件部分尺寸及公差计算18

3.3 切槽模21

3.3.1模具结构21

3.3.2 模具工件部分尺寸及公差计算22

3.4 翻边模23

3.4.1模具结构23

3.4.2 模具工件部分尺寸及公差计算24

第四章 结 论27

参考文献28

谢  辞29


摘 要

水泵叶轮是微型汽车上发动机冷却系统中离心式水泵的重要零件。本文分析了水泵叶轮零件的结构特点, 计算了该叶轮的展开尺寸, 确定了该工件的冲压成形工艺及各工序尺寸, 对全套模具的总体结构设计进行了比较详细的论述,并在此基础上确定了叶轮冲压模具零件的具体结构和尺寸,在生产合格零件的基础上尽量提高生产效率,降低生产成本。主要介绍了叶轮零件冲压成形应包括的基本工序方案,工艺参数计算,模具结构设计、尺寸等。

  关键词:水泵叶轮;  冲压;  工序; 模具设计


The Pressing Process Analysis and Die Design of Pump Impeller

ABSTRACT

The pump impeller is an important parts of the centrifugal pumps which was used for the minicar’s engine cooling system. The structure characteristics of the pump impeller were analyzed, and calculated the expanding dimension of this parts, determined pressing forming process of the pump impeller and dimensions of each working procedure, and described the structure design of whole sets of dies in detail,  And on that basis determine the structure and size of the impeller stamping die specific parts.  To maximize production efficiency and reduce production costs in the production of qualified on the basis of parts. Main introduction of this text leaf round project of basic work preface for spare parts washing pressing take shaping should including; The craft counts the calculation; Molding tool construction design, size...etc.

Key words: pump impeller; pressing process; die design;

第一章 前  言

1.1选题背景

在现代汽车工业中,微型汽车上发动机冷却系统离心式水泵内叶轮由铸铁等金属或工程塑料制成,采用向后弯曲的半圆弧、双圆弧或多圆弧形叶片,其叶型与水流方向一致,泵水效率较高。塑料叶轮容易实现小型化和轻量化,且耐腐蚀性能好,有越来越多的汽车发动机水泵使用了塑料叶轮。但塑料叶轮容易开裂或叶轮磨损后从泵轴上松脱,使冷却液循环速度变慢,容易引起发动机温度过高的故障。损坏的叶轮在旋转时还可能撞击水泵壳体,造成壳体碎裂。铸铁制成的水泵叶轮机械强度较高,但其质量较大。因此一种能综合现在采用材料优点而又避其缺点的产品就应时而生了。

1.2 课题相关调研

水箱在汽车的冷却、散热中有着重要的作用。因为汽车的冷却系统是用来为发动机散热的,一般常见的发动机过热问题。发动机是由冷却液的循环来实现的,强制冷却液循环的部件是水泵,它由曲轴皮带带动水泵叶轮推动冷却液在整个系统内循环。

为了保证冷却效果,汽车冷却系统一般由以下几部分组成:散热器、节温器、水泵、缸体水道、缸盖水道、风扇等组成。据资料显示:导致汽车抛锚的故障中,冷却系统故障位居第一。由此可见,汽车冷却系统保养对汽车安全运行起着重要的作用。

叶轮用于微型汽车上发动机冷却系统的离心式水泵内,工件时以1500-3000r/min左右的速度旋转,使冷却水在冷却系统中不断地循环流动。为保证足够的强度和刚度,叶轮采用厚度为2mm的Al脱氧镇静钢冷轧板。


内容简介:
Materials Science and Engineering A 476 (2008) 178185Equal channel angular extrusion of flat productsV.M. SegalEngineered Performance Materials, 11228 Lemen Rd-Suite A, Whitmore Lake, MI 48198, USAReceived 19 February 2007; received in revised form 20 April 2007; accepted 24 April 2007AbstractThepaperconsidersequalchannelangularextrusion(ECAE)ofsufficientlylongrectangularbilletswithdifferentwidth-to-thicknessratios W/T.A stress analysis is performed inside plastic zone and inlet and outlet channels depending on contact friction and the billet geometry. Optimizationof the processing mechanics and strategy to design tools are formulated. It is shown that flat billets with W/T?1 provide important technicaladvantages for processing of massive slab-like billets and technology commercialization on the large metallurgical scale. 2007 Elsevier B.V. All rights reserved.Keywords: ECAE; Optimization of processing; Flat products; Large scale commercialization1. IntroductionThe control of material structures by severe plastic deforma-tion (SPD) presents significant scientific and practical interest.An important advantage of this approach is structure refine-ment to the sub-micron scale that can be attained in bulk billets,in a cost effective manner and for different metals and alloys.Such ultra-fine grained structures, usually in the range from afew microns to 0.2 micron, provide a reasonable compromisebetweenhighstrengthandsatisfactoryductilitythatisespeciallyattractive for structural applications. For commercialization ofSPD substantial progress should be made in the related defor-mation techniques. The key factors are deformation method andoptimization of processing characteristics. Irrespective of pro-cessing goal, material and temperaturestrain rate conditions,the mechanics of SPD should provide intensive and uniformstrains,simplesheardeformationmodeandlowstresses.Amonga few known methods of SPD, equal channel angular extrusion(ECAE)ispresentlyconsideredasthemostpromisingforindus-trial applications. However, realization of ECAE still remainsimperfective. Despite of extensive activity in the field, absolutemajority of the published works dealt with elongated billets aswas originally described in 1. These bars or rods like billetsimpose restrictions on materials, characteristics of ECAE andfollowing processing. They are difficult to use as semi finishedTel.: +1 517 548 3417.E-mail address: ducts and still there are no reports on process commercial-ization. In contrast, ECAE of flat billets followed by rolling,first introduced in 2, corresponds to universal products such asplates, sheets, strips and foils. Together with other technologi-cal advantages, this processing concept of ECAE presents greatpractical perspectives. While ECAE of elongated billets is nowwell investigated, special features of the ECAE of flat billetsare not understood and were not disclosed in just a few relatedpublications35.Thepresentpaperaddressessomeimportantdetails of the ECAE technology in the case of flat billets.2. Processing mechanicsLetsconsiderECAEofarectangularbillet(Fig.1)withthick-nessT,widthWandlengthLthroughsharpcornerchannelswithtool angle 90. Original 1 and final 2 billet positions are shownin Fig. 1 by long chain and solid lines, correspondingly. As thebillet width W remains the same and the billet is moved insidethe channels as a rigid body, the flow is near plane and the plas-tic zone is localized around a crossing plane of channels. It isknown 6 that the stressstrain state and extension of the plas-tic zone strongly depend on boundary conditions imposed byan inlet channel 1 and an outlet channel 2. Thus, correspondingconditions should be analyzed first.2.1. Inlet channelAtthebeginningofECAE,thewelllubricatedbilletisplacedinto the inlet channel. An actual friction force depends on real0921-5093/$ see front matter 2007 Elsevier B.V. All rights reserved.doi:10.1016/j.msea.2007.04.092V.M. Segal / Materials Science and Engineering A 476 (2008) 178185179Fig. 1. ECAE of rectangular billets.plastic contact and normal pressure between material and chan-nel walls. Assuming that a stress state inside the channel issimilar to linear plastic compression, the normal pressure non channel walls is (Fig. 2a)n (p Y)where p is the axial pressure and Y is the material flow stress. IfpY, the pressure n0, and for long billets with L/T?1 theplastic contact is formed by transverse buckling. Such irregular,local contact provides low friction force. If p2Y, the normalpressure nY, and the plastic contact approximates to the fullcontact area between billet and channel. In this case, the samelubricant will result in large friction force and significant incre-mentofpressure?palongachannellength.Then,theextrusionpressure peis:pe= p1+ ?p(1)where p1is the axial pressure at the channel entry. Experimentsshowthatinallcasestheincrementofpressure?pchangesinthelinear proportion with the channel length L. That allows one tosuppose that effective plastic friction 1is uniformly distributedand the ?p may be calculated by the formula:?p = 1fHere f is a full contact area between billet and walls. When1is known for specific conditions, the maximum increment ofthe extrusion pressure in the stationary rectangular channel withfour friction walls (Fig. 2a) is:?pY=(2n 1)(1 + m)(1/Y)m(2)Here parameters n=L/T and m=W/T define relative billetlength and width. In particular, m=1 corresponds to the ordi-nary case of long bar- or rod-like billets, m?1 corresponds toflat plate-like billets and m?1 corresponds to strip-like billets.Formulae(1)and(2)showthat,dependingonnandm,theextru-sion pressure pemay be significantly bigger than the materialflow stress Y even for low friction 1.The effective way to reduce contact friction, increase toollife and punch stability is via movable channel walls 7. Inone possible case (Fig. 2b, for detail see 7), the inlet channelis formed by one stationary die wall and rectangular slot ofthe slider 2, which moves together with the billet 1. That wayfriction is eliminated along three channel walls. The maximumincrement of extrusion pressure is:?pY= (n 1)?1Y?(3)In another case (Fig. 2c), two side walls of the inlet channelare formed by movable sliders 2, 3 whereas back and front diewallsarestationary.Correspondingly,theincrementofthepunchpressure is:?pY= (2n 1)?1Y?(4)It is informative to compare results of formulae (2)(4). Inall cases, the extrusion pressure increases with the billet length-to-thickness ratio n. For effective processing, this ratio shouldbe sufficiently large. Practically, n is selected between 4 and 8.The increment ?p/Y is almost twice as large for Fig. 2c thanfor Fig. 2b. For the stationary channel (Fig. 2a), the extrusionpressure also strongly depends on the billet width-to-thicknessratio m. However, this ratio does not affect the extrusion pres-sure in both cases of movable channel walls. Calculated resultsfor typical conditions n=6, 1/Y=0.15 are shown on Fig. 3 infunction of m. Three characteristic situations are outlined: (I)long billets (m=1); (II) plate-like billets (m?1); (III) strip-likebillets (m?1). It is evident that ECAE of long and, especially,Fig. 2. Distribution of friction in inlet channels with: (a) stationary walls; (b) three movable walls; (c) two movable sidewalls.180V.M. Segal / Materials Science and Engineering A 476 (2008) 178185Fig. 3. Effect of billet ratio m on the increase of pressure along inlet channel(L/T=6, 1/Y=0.15) with: (1) stationary walls; (2) three movable walls; (3) twomovable walls.strip-like billets in stationary channels results in the multifoldincrease of the extrusion pressure in comparison with the flowstress Y. In these cases, ECAE of sufficiently large billets andhard materials can be performed only in dies with movablechannel walls at powerful presses. However, for flat billets, twomovable channel walls provide insignificant reduction of theextrusion pressure. Therefore, simple dies with stationary inletchannelsandordinarypressescanbeusedinmanycasesoflargeflat billets.2.2. Outlet channelIncontrasttotheinletchannel,lubricationoftheoutletchan-nel is a challenging problem (Fig. 4a). Because of the sharpchange in the extrusion direction, high normal pressure at thebottom wall, intensive slip and uncovering of the atomic cleanmaterial along a bottom contact surface O1B, heavy scratches,stickingandgallingcanbeobservedevenwiththebestlubricants7. That leads to high extrusion pressure, poor billet surfaceand intensive die wear. All these problems can be eliminated byusing a movable slider along the bottom channel wall (Fig. 4b)7. That way plastic friction between material and die is sub-Fig. 5. Slip line solution with different friction in channels.stituted by elastic friction between slider 1 and guide Plate2. During extrusion, the slider 1 usually remains free and someslip and shear stresses 2should be developed along the billetcontact surface O1B to overcome friction between slider and aguide plate:2fO1B= p1WT(5)Here fO1Bis an area of the contact surface O1B and isthe coefficient of Coulombs friction. At normal conditions, theslider speed is close to the extrusion speed. As friction is not astable phenomenon, certain deviations in the slider movementmay be observed. If stresses 2exceed plastic friction betweenbillet and slider, the flow becomes similar to the stationary die.Corresponding boundary conditions in the outlet channel donot provide a localized plastic zone and simple shear deforma-tion mode necessary for effective processing 6. Therefore, thecoefficient should be sufficiently low.2.3. Plastic deformation zoneInlet and outlet channels define friction boundary conditions1,2fortheplasticzone.AsliplinesolutionisshownonFig.5Fig. 4. Stationary outlet channel (a) and outlet channel with movable bottom wall (b).V.M. Segal / Materials Science and Engineering A 476 (2008) 178185181for the case 121. It is supposed that the material behavior issimilar to the ideal plastic body28. The slip line field includescentral fan FEDO, mixed boundary area CDE and dead metalarea O1CA. The central angle of the dead area is:1= 1+ 2 (6)Angles 1, 2are calculated by formulae 8:1=? Arccos(1/k)2?,2=? Arccos(2/k)2?,where k=Y/3 is the material shear flow stress. Solutions forparticular cases of 1, 2were considered in 6.Now we can gather results and outline the optimal strategyto design ECAE processing. First of all, note that the stationaryoutlet channel always induces the lubrication problem. In thelimitsituation2k,10,asliplineanalysis6,7givesforthe entry pressure at the inlet channel p1/Y2.3. That results infull contact between billet and channel walls and leads to thehigh extrusion pressure pein all practical cases of long channelsL/T?1 and finite friction 10. In fact, published data showthattheextrusionpressuremaybeashighasp/Y79.Formostmaterials at low processing temperatures, so large pressures arenot admissible for modern tool alloys. Therefore, despite sim-plicity, stationary outlet channels are unpractical for industrialapplications.With a proper movable bottom wall of the outlet channel(Fig. 4b), friction 1, 2and coefficient are small quanti-ties. Under these conditions, the slip line field of Fig. 5 canbe considered as a small modification of the “zero solution”when 1=2=0 and the plastic zone is the single sliplineO1O.Then,usingtheperturbationmethodforsliplines10and omitting intermediate results, with accuracy to the secondorder of magnitude, formulae (5) and (6) give:2 Y, (1+ Y)kand the entry pressure inside the inlet channel is:p1Y23+1Y+ ?1 +122?(7)In accordance with Eq. (7), there is a sufficient room forparameters1andtoformthelocalcontactbetweenbilletandinlet channel with low friction, if the increment of the extrusionpressure ?p also remains moderate. With movable outlet chan-nel, the inlet channel may be performed as stationary (Fig. 2a)or with two movable walls (Fig. 2c). As was previously shown(Fig. 3), the simple stationary channel is effective for flat billetswith the length-to-thickness ratio L/T more than four whereasfor long billets (L/T=l) and strip-like billets (L/T?l) movablesidewalls are necessary. Therefore, only the first case will befurther considered.1An alternative solution for 14, the moderate extrusion pres-sure (Ype2Y)results in full contact and the high friction. In all cases, a mov-able bottom wall of the outlet channel is an effective technical4See .V.M. Segal / Materials Science and Engineering A 476 (2008) 178185185solutiontoeliminatefriction,materialstickingandtoreducetheextrusion pressure.The billet width-to-thickness ratio W/T also has a notableeffect on the extrusion pressure for long square (W/Tl) andstrip-like billets (W/T?1). In these cases, the inlet channelswith two movable walls are necessary to reduce the extrusionpressure. For flat billets with W/T?1 this effect is insignificantand simple stationary inlet channels may be used.The basic processing routes for flat billets lead to similarmaterial distortions as in long square billets. However, routes Band D with spatial plastic flows provide different orientationsof shear bands/high angle boundaries and are less effective thanfor long billets. Other processing routes, similar to consideredroutes E and D, should be introduced in special cases.ECAE of bulk slab-like billets provides important technicaladvantagesinfabricationofd
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:水泵叶轮冲压工艺与模具设计[3套模具]【36张CAD图纸+毕业答辩论文】【冲压模具】
链接地址:https://www.renrendoc.com/p-443498.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!