高考数学真题汇编10 圆锥曲线 理( 解析版).doc_第1页
高考数学真题汇编10 圆锥曲线 理( 解析版).doc_第2页
高考数学真题汇编10 圆锥曲线 理( 解析版).doc_第3页
高考数学真题汇编10 圆锥曲线 理( 解析版).doc_第4页
高考数学真题汇编10 圆锥曲线 理( 解析版).doc_第5页
免费预览已结束,剩余23页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2012高考真题分类汇编:圆锥曲线一、选择题1.【2012高考真题浙江理8】如图,f1,f2分别是双曲线c:(a,b0)的左、右焦点,b是虚轴的端点,直线f1b与c的两条渐近线分别交于p,q两点,线段pq的垂直平分线与x轴交与点m,若|mf2|=|f1f2|,则c的离心率是a. b。 c. d. 【答案】b【解析】由题意知直线的方程为:,联立方程组得点q,联立方程组得点p,所以pq的中点坐标为,所以pq的垂直平分线方程为:,令,得,所以,所以,即,所以。故选b2.【2012高考真题新课标理8】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 【答案】c【解析】设等轴双曲线方程为,抛物线的准线为,由,则,把坐标代入双曲线方程得,所以双曲线方程为,即,所以,所以实轴长,选c.3.【2012高考真题新课标理4】设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 【答案】c【解析】因为是底角为的等腰三角形,则有,,因为,所以,,所以,即,所以,即,所以椭圆的离心率为,选c.4.【2012高考真题四川理8】已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则( )a、 b、 c、 d、 【答案】b【解析】设抛物线方程为,则点焦点,点到该抛物线焦点的距离为, , 解得,所以.5.【2012高考真题山东理10】已知椭圆的离心学率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为(a) (b) (c) (d)【答案】d【解析】因为椭圆的离心率为,所以,所以,即,双曲线的渐近线为,代入椭圆得,即,所以,则第一象限的交点坐标为,所以四边形的面积为,所以,所以椭圆方程为,选d.6.【2012高考真题湖南理5】已知双曲线c :-=1的焦距为10 ,点p (2,1)在c 的渐近线上,则c的方程为a-=1 b.-=1 c.-=1 d.-=1【答案】a【解析】设双曲线c :-=1的半焦距为,则.又c 的渐近线为,点p (2,1)在c 的渐近线上,即.又,c的方程为-=1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.7.【2012高考真题福建理8】已知双曲线的右焦点与抛物线y2=12x的焦点重合,则该双曲线的焦点到其渐近线的距离等于a. b. c.3 d.5【答案】 【解析】由抛物线方程易知其焦点坐标为,又根据双曲线的几何性质可知,所以,从而可得渐进线方程为,即,所以,故选8.【2012高考真题安徽理9】过抛物线的焦点的直线交抛物线于两点,点是原点,若,则的面积为( ) 【答案】c【命题立意】本题考查等直线与抛物线相交问题的运算。【解析】设及;则点到准线的距离为,得: 又,的面积为。9.【2012高考真题全国卷理3】 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为a +=1 b +=1c +=1 d +=1【答案】c【解析】椭圆的焦距为4,所以因为准线为,所以椭圆的焦点在轴上,且,所以,所以椭圆的方程为,选c.10.【2012高考真题全国卷理8】已知f1、f2为双曲线c:x-y=2的左、右焦点,点p在c上,|pf1|=|2pf2|,则cosf1pf2=(a) (b) (c) (d)【答案】c【解析】双曲线的方程为,所以,因为|pf1|=|2pf2|,所以点p在双曲线的右支上,则有|pf1|-|pf2|=2a=,所以解得|pf2|=,|pf1|=,所以根据余弦定理得,选c.11.【2012高考真题北京理12】在直角坐标系xoy中,直线l过抛物线=4x的焦点f.且与该撇物线相交于a、b两点.其中点a在x轴上方。若直线l的倾斜角为60.则oaf的面积为 【答案】【解析】由可求得焦点坐标f(1,0),因为倾斜角为,所以直线的斜率为,利用点斜式,直线方程为,将直线和曲线联立,因此二、填空题12.【2012高考真题湖北理14】如图,双曲线的两顶点为,虚轴两端点为,两焦点为,. 若以为直径的圆内切于菱形,切点分别为. 则()双曲线的离心率 ;()菱形的面积与矩形的面积的比值 .【答案】 【解析】()由于以为直径的圆内切于菱形,因此点到直线的距离为,又由于虚轴两端点为,因此的长为,那么在中,由三角形的面积公式知,又由双曲线中存在关系联立可得出,根据解出()设,很显然知道,因此.在中求得故;菱形的面积,再根据第一问中求得的值可以解出.13.【2012高考真题四川理15】椭圆的左焦点为,直线与椭圆相交于点、,当的周长最大时,的面积是_。【答案】3【命题立意】本题主要考查椭圆的定义和简单几何性质、直线与圆锥曲线的位置关系、,考查推理论证能力、基本运算能力,以及数形结合思想,难度适中.【解析】当直线过右焦点时的周长最大,;将带入解得;所以.14.【2012高考真题陕西理13】右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.【答案】.【解析】设水面与桥的一个交点为a,如图建立直角坐标系则,a的坐标为(2,-2).设抛物线方程为,带入点a得,设水位下降1米后水面与桥的交点坐标为,则,所以水面宽度为.15.【2012高考真题重庆理14】过抛物线的焦点作直线交抛物线于两点,若则= . 【答案】【解析】抛物线的焦点坐标为,准线方程为,设a,b的坐标分别为的,则,设,则,所以有,解得或,所以.16.【2012高考真题辽宁理15】已知p,q为抛物线上两点,点p,q的横坐标分别为4,2,过p、q分别作抛物线的切线,两切线交于a,则点a的纵坐标为_。【答案】4【解析】因为点p,q的横坐标分别为4,2,代人抛物线方程得p,q的纵坐标分别为8,2.由所以过点p,q的抛物线的切线的斜率分别为4,2,所以过点p,q的抛物线的切线方程分别为联立方程组解得故点a的纵坐标为4【点评】本题主要考查利用导数求切线方程的方法,直线的方程、两条直线的交点的求法,属于中档题。曲线在切点处的导数即为切线的斜率,从而把点的坐标与直线的斜率联系到一起,这是写出切线方程的关键。17.【2012高考真题江西理13】椭圆 的左、右顶点分别是a,b,左、右焦点分别是f1,f2。若,成等比数列,则此椭圆的离心率为_.【答案】【命题立意】本题考查椭圆的几何性质,等比数列的性质和运算以及椭圆的离心率。【解析】椭圆的顶点,焦点坐标为,所以,,又因为,成等比数列,所以有,即,所以,离心率为.18.【2012高考江苏8】(5分)在平面直角坐标系中,若双曲线的离心率为,则的值为 【答案】2。【考点】双曲线的性质。【解析】由得。 ,即,解得。三、解答题19.【2012高考江苏19】(16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点p(i)若,求直线的斜率;(ii)求证:是定值【答案】解:(1)由题设知,由点在椭圆上,得,。由点在椭圆上,得椭圆的方程为。(2)由(1)得,又, 设、的方程分别为,。 。 。 同理,。 (i)由得,。解得=2。 注意到,。 直线的斜率为。 (ii)证明:,即。 。 由点在椭圆上知,。 同理。 由得, 。 是定值。 20.【2012高考真题浙江理21】(本小题满分15分)如图,椭圆c:(ab0)的离心率为,其左焦点到点p(2,1)的距离为不过原点o的直线l与c相交于a,b两点,且线段ab被直线op平分()求椭圆c的方程;() 求abp的面积取最大时直线l的方程【命题立意】本题主要考查椭圆的几何性质,直线与椭圆的位置关系,同时考查解析几何的基本思想方法和运算求解能力。【答案】()由题:; (1)左焦点(c,0)到点p(2,1)的距离为: (2)由(1) (2)可解得:所求椭圆c的方程为:()易得直线op的方程:yx,设a(xa,ya),b(xb,yb),r(x0,y0)其中y0x0a,b在椭圆上,设直线ab的方程为l:y(m0),代入椭圆:显然m且m0由上又有:m,|ab|点p(2,1)到直线l的距离表示为:sabpd|ab|m2|,当|m2|,即m3 或m0(舍去)时,(sabp)max此时直线l的方程y21.【2012高考真题辽宁理20】(本小题满分12分) 如图,椭圆:,a,b为常数),动圆,。点分别为的左,右顶点,与相交于a,b,c,d四点。 ()求直线与直线交点m的轨迹方程; ()设动圆与相交于四点,其中,。若矩形与矩形的面积相等,证明:为定值。【答案】【点评】本题主要考查圆的性质、椭圆的定义、标准方程及其几何性质、直线方程求解、直线与椭圆的关系和交轨法在求解轨迹方程组的运用。本题考查综合性较强,运算量较大。在求解点的轨迹方程时,要注意首先写出直线和直线的方程,然后求解。属于中档题,难度适中。22.【2012高考真题湖北理】(本小题满分13分)设是单位圆上的任意一点,是过点与轴垂直的直线,是直线与 轴的交点,点在直线上,且满足. 当点在圆上运动时,记点m的轨迹为曲线()求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标; ()过原点且斜率为的直线交曲线于,两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,使得对任意的,都有?若存在,求的值;若不存在,请说明理由. 【答案】()如图1,设,则由,可得,所以,. 因为点在单位圆上运动,所以. 将式代入式即得所求曲线的方程为. 因为,所以当时,曲线是焦点在轴上的椭圆,两焦点坐标分别为,;当时,曲线是焦点在轴上的椭圆,两焦点坐标分别为,. ()解法1:如图2、3,设,则,直线的方程为,将其代入椭圆的方程并整理可得.依题意可知此方程的两根为,于是由韦达定理可得,即.因为点h在直线qn上,所以.于是,. 而等价于,即,又,得,故存在,使得在其对应的椭圆上,对任意的,都有. 图2 图3 图1o d xyam第21题解答图 解法2:如图2、3,设,则,因为,两点在椭圆上,所以 两式相减可得. 依题意,由点在第一象限可知,点也在第一象限,且,不重合,故. 于是由式可得. 又,三点共线,所以,即. 于是由式可得.而等价于,即,又,得,故存在,使得在其对应的椭圆上,对任意的,都有. 23.【2012高考真题北京理19】(本小题共14分)【答案】解:(1)原曲线方程可化简得:由题意可得:,解得:(2)由已知直线代入椭圆方程化简得:,解得:由韦达定理得:,设,方程为:,则,欲证三点共线,只需证,共线即成立,化简得:将代入易知等式成立,则三点共线得证。24.【2012高考真题广东理20】(本小题满分14分)在平面直角坐标系xoy中,已知椭圆c1:的离心率e=,且椭圆c上的点到q(0,2)的距离的最大值为3.(1)求椭圆c的方程;(2)在椭圆c上,是否存在点m(m,n)使得直线:mx+ny=1与圆o:x2+y2=1相交于不同的两点a、b,且oab的面积最大?若存在,求出点m的坐标及相对应的oab的面积;若不存在,请说明理由【答案】本题是一道综合性的题目,考查直线、圆与圆锥曲线的问题,涉及到最值与探索性问题,意在考查学生的综合分析问题与运算求解的能力。25.【2012高考真题重庆理20】(本小题满分12分()小问5分()小问7分) 如图,设椭圆的中心为原点o,长轴在x轴上,上顶点为a,左右焦点分别为,线段 的中点分别为,且 是面积为4的直角三角形.()求该椭圆的离心率和标准方程;()过 做直线交椭圆于p,q两点,使,求直线的方程【答案】【命题立意】本题考查椭圆的标准方程,平面向量数量积的基本运算,直线的一般式方程以及直线与圆锥曲线的综合问题.26.【2012高考真题四川理21】(本小题满分12分) 如图,动点到两定点、构成,且,设动点的轨迹为。()求轨迹的方程;()设直线与轴交于点,与轨迹相交于点,且,求的取值范围。【答案】本题主要考查轨迹方程的求法,圆锥曲线的定义等基础知识,考查基本运算能力,逻辑推理能力,考查方程与函数、数形结合、分类讨论、化归与转化等数学思想 27.【2012高考真题新课标理20】(本小题满分12分)设抛物线的焦点为,准线为,已知以为圆心,为半径的圆交于两点;(1)若,的面积为;求的值及圆的方程;(2)若三点在同一直线上,直线与平行,且与只有一个公共点,求坐标原点到距离的比值.【答案】(1)由对称性知:是等腰直角,斜边 点到准线的距离 圆的方程为 (2)由对称性设,则 点关于点对称得: 得:,直线 切点 直线坐标原点到距离的比值为.28.【2012高考真题福建理19】如图,椭圆e:的左焦点为f1,右焦点为f2,离心率.过f1的直线交椭圆于a、b两点,且abf2的周长为8.()求椭圆e的方程.()设动直线l:y=kx+m与椭圆e有且只有一个公共点p,且与直线x=4相较于点q.试探究:在坐标平面内是否存在定点m,使得以pq为直径的圆恒过点m?若存在,求出点m的坐标;若不存在,说明理由. 29.【2012高考真题上海理22】(4+6+6=16分)在平面直角坐标系中,已知双曲线:(1)过的左顶点引的一条渐进线的平行线,求该直线与另一条渐进线及轴围成的三角形的面积;(2)设斜率为1的直线交于、两点,若与圆相切,求证:;(3)设椭圆:,若、分别是、上的动点,且,求证:到直线的距离是定值.【答案】过点a与渐近线平行的直线方程为,,则到直线的距离为.设到直线的距离为.【点评】本题主要考查双曲线的概念、标准方程、几何性质及其直线与双曲线的关系、椭圆的标准方程和圆的有关性质.特别要注意直线与双曲线的关系问题,在双曲线当中,最特殊的为等轴双曲线,它的离心率为,它的渐近线为,并且相互垂直,这些性质的运用可以大大节省解题时间,本题属于中档题 30.【2012高考真题陕西理19】本小题满分12分)已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率。(1)求椭圆的方程;(2)设o为坐标原点,点a,b分别在椭圆和上,求直线的方程。 【答案】 31.【2012高考真题山东理21】(本小题满分13分)在平面直角坐标系中,是抛物线的焦点,是抛物线上位于第一象限内的任意一点,过三点的圆的圆心为,点到抛物线的准线的距离为.()求抛物线的方程;()是否存在点,使得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论