整式的乘除与因式分解.doc_第1页
整式的乘除与因式分解.doc_第2页
整式的乘除与因式分解.doc_第3页
整式的乘除与因式分解.doc_第4页
整式的乘除与因式分解.doc_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京育才苑教学设计方案 年 月 日姓 名学生姓名上 课 时 间辅导科目年级课时教 材 版 本课题名称教学目标教学重点教学难点教学方法教学及辅导过程整式的乘除与因式分解一、学习目标:1.掌握与整式有关的概念;2.掌握同底数幂、幂的乘法法则,同底数幂的除法法则,积的乘方法则;3.掌握单项式、多项式的相关计算;4.掌握乘法公式:平方差公式,完全平方公式。5.掌握因式分解的常用方法。二、知识点总结:1、 单项式的概念:由数与字母的乘积构成的代数式叫做单项式。单独的一个数或一个字母也是单项式。单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。如:的 系数为,次数为4,单独的一个非零数的次数是0。2、 多项式:几个单项式的和叫做多项式。多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。如:,项有、1,二次项为、,一次项为,常数项为1,各项次数分别为2,2,1,0,系数分别为1,-2,1,1,叫二次四项式。3、 整式:单项式和多项式统称整式。注意:凡分母含有字母代数式都不是整式。也不是单项式和多项式。4、 同底数幂的乘法法则:(都是正整数)同底数幂相乘,底数不变,指数相加。注意底数可以是多项式或单项式。如:5、 幂的乘方法则:(都是正整数)幂的乘方,底数不变,指数相乘。如:幂的乘方法则可以逆用:即如:6、 积的乘方法则:(是正整数)积的乘方,等于各因数乘方的积。如:(=7、 同底数幂的除法法则:(都是正整数,且同底数幂相除,底数不变,指数相减。如:8、 零指数和负指数;,即任何不等于零的数的零次方等于1。(是正整数),即一个不等于零的数的次方等于这个数的次方的倒数。如:9、 单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。注意:积的系数等于各因式系数的积,先确定符号,再计算绝对值。相同字母相乘,运用同底数幂的乘法法则。只在一个单项式里含有的字母,则连同它的指数作为积的一个因式单项式乘法法则对于三个以上的单项式相乘同样适用。单项式乘以单项式,结果仍是一个单项式。如:10、 单项式乘以多项式,就是用单项式去乘多项式的每一项,再把所得的积相加,即(都是单项式)注意:积是一个多项式,其项数与多项式的项数相同。运算时要注意积的符号,多项式的每一项都包括它前面的符号。在混合运算时,要注意运算顺序,结果有同类项的要合并同类项。如:11、 多项式与多项式相乘的法则;多项式与多项式相乘,先用多项式的每一项乘以另一个多项式的每一项,再把所的的积相加。如:12、 平方差公式:注意平方差公式展开只有两项公式特征:左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数。右边是相同项的平方减去相反项的平方。如: 13、 完全平方公式:公式特征:左边是一个二项式的完全平方,右边有三项,其中有两项是左边二项式中每一项的平方,而另一项是左边二项式中两项乘积的2倍。注意: 完全平方公式的口诀:首平方,尾平方,加上首尾乘积的2倍。14、 三项式的完全平方公式:15、 单项式的除法法则:单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。注意:首先确定结果的系数(即系数相除),然后同底数幂相除,如果只在被除式里含有的字母,则连同它的指数作为商的一个因式如:16、 多项式除以单项式的法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,在把所的的商相加。即:17、 因式分解:常用方法:提公因式法、公式法、配方法、十字相乘法三、知识点分析:1. 同底数幂、幂的运算:aman=am+n(m,n都是正整数).(am)n=amn(m,n都是正整数).1、 若,则a= ;若,则n= .2、 计算3、 若,则= . 2.积的乘方(ab)n=anbn(n为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.1、 计算:3.乘法公式平方差公式:完全平方和公式:完全平方差公式:1) 利用平方差公式计算:20092007200822) (a2b3cd)(a2b3cd)变式练习1广场内有一块边长为2a米的正方形草坪,经统一规划后,南北方向要缩短3米,东西方向要加长3米,则改造后的长方形草坪的面积是多少?2. 已知 求的值3、已知 ,求xy的值4.如果ab2a 4b 50 ,求a、b的值5一个正方形的边长增加4cm ,面积就增加56cm ,求原来正方形的边长 4.单项式、多项式的乘除运算1) (ab)(2ab)(3a2b2);2) (ab)(ab)2(a22abb2)2ab3) 已知,求 的值。4) 若x、y互为相反数,且,求x、y的值说明:(1)一次备课可用多张纸,不限张数,备好课为目的;(2)此教案所要求内容须认真填写,不准空项。教学及辅导过程初二数学第一学期期末模拟试题 一、填空题(每题2分,共20分) 1.因式分解:6(m-n)-3a(m-n)=_. 2.若4x2+ax+9是完全平方式, 则a=_. 3.因式分解:a4-5a2+4=_。 4.当m=_时,分式的值为零。 5.当x_时,分式有意义。 6.不改变分式的值,将分式的分子和分母各项系数都化成整数:=_。 7.若1+=b且b1,则a=_。 8.ABC中,a=6, b=11,c的取值范围为_。 9.等腰三角形的顶角和一个底角之和为100,则顶角度数为_。 10.如图1,已知RtABC中,CD是斜边AB上的高,DFAC,垂足为F,若B=30则AB=_AC,AD=_ DB,AF=_AD。 二、选择题(每题2分,共20分) 1.下列因式分解正确的是() A、x2-=(x+)(x-)B、2an+a2n=an(2+a2) C、m2-mn+n2=(m-)2D、4b2-4b-1=(2b-1)2 2.等腰三角形一个内角为40,则另外两个内角的度数( ) A、40, 100B、70, 70 C、80, 80 D、40, 100或70, 70 3.下列分式中,最简分式是() A、B、C、D、 4.下面计算错误的是( ) A、+=1B、+=1 C、-=2D、-=x 5,方程+1=0有增根,增根是() A、x=1B、x=-1C、x=1D、x=0 6.a,b为有理数解下列关于x的方程正确的是( ) A、方程ax+b=bx+a的解为x=1 B、方程ax+b2=a2-bx的解为x=a-b C、方程a2x+b=a+b2x的解为x= D、方程a2x=b-x的解为x= 7.ABC中,ABC的平分线BD与ACB的平分线CE交于点O,若A=80,则BOC度数为() A、100B、110C、130D、150 8.下列命题中正确的有()个 三个内角对应相等的两个三角形全等; 三条边对应相等的两个三角形全等; 两边和一角对应相等的两个三角形全等; 等底等高的两个三角形全等。 A、1B、2C、3D、4 9.如图2,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形。 A、2B、3C、4D、5 10 .若D是直角ABC斜边上的中点,DEAB,如果EACBAE=25,那么BAC=( ) A、60B、5230C、45D、37.5 三、因式分解(每题5分,共20分) 1. an+1-2an-3an-1; 2. a2-b2+b-; 3. a4-13a2+36; 4. (x2-2x)2-11(x2-2x)+24. 四、化简求值:(本题6分) ,其中x。 五、解方程(每题5分,共10分) 1. +b=+a (x为未知数,且|a|b|); 2. +=-. 六、证明题(每题6分,共12分) 1.已知:如图,AB=AC,D,E分别在AB,AC上,BE,CD交于F且BF=CF,求证:ADC=AEB。 2. 如图5,已知:等边ABC,D为AC边上一点,BD=CE,1=2,求证:ADE是等边三角形。 七、列方程解应用题(每题6分,共12分) 1.我部队到某桥头阻击敌人,出发时敌人离桥头24千米,我部队离桥头30千米。我部队急行军,速度是敌人的1.5倍,结果比敌人提前48分钟到达,求我部队的速度? 2.一个工程队,用普通的挖掘方法工作6小时后改用新的挖掘方法再工作3小时,一共完成全部任务的,已知新方法工作2小时可以完成普通方法4小时所完成的任务,问用这两种方法单独工作去完成全部任务,各需多少小时? 初二期末模拟试题答案 一、1. 3(m-n)(2-a) 2. 4x2+ax+9=(2x)2+2(2x)( 3)+(3)2=4x212x+9, a=12. 3.a4-5a2+4=(a2-4)(a2-1)=(a+2)(a-2)(a+1)(a-1) 4. -3 5. x7 6. 根据分式的基本性质,将分式的分子与分母同时乘以10, 再化简,即可得到:= 7.把它看成是一个关于a的方程,两边同时乘以a,得: a+(b-c)=ab ab-a=b-c a(b-1)=b-c b1,b-10 a= 8.b-acb+a,11-6c11+6,5c0,a2+10,x= 此题主要考察了系数化为1时,方程两边不能同时除以0。 7.C 8.A 只有是正确的。 9.C 此图中有ABCCDA,BADDCB,AOBCOD,AODCOB。 10.BD是AB中点且DEAB, EA=EB(线段的中垂线的性质) EAD=B 设EAC=2x,则EAD=B=5x, 又C=90, EAC+EAD+B=90, 2x+5x+5x=90, x=7.5, BAC=7x=77.5=52.5=5230。 三、1. an-1(a-3)(a+1) 2. (a+b-)(a-b+) 3. (a+2)(a-2)(a+3)(a-3) 4. (x+1)(x+2)(x-3)(x-4) 四、原式=当x=时,原式=4 五、1、去分母得: a2x+ab2=b2x+a2b (a2-b2)x=a2b-ab2 (a2-b2)x=ab(a-b) |a|b|,a2-b20, x= 2.x= 六、1.分析:连结AF, 可先证出ABFACF(SSS) B=C, 又BF=CF, BFD=CFE, BFDCFE, BDF=CEF, ADC=AEB 另法:连接BC,证明AEBADC 2.分析:AB=AC,1=2,BD=CE, ABDACE, AD=AE,EAC=DAB=60, ADE为等边(有一

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论