




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学习资料收集于网络,仅供参考求数列通项公式方法(1)公式法(定义法)根据等差数列、等比数列的定义求通项例:1已知等差数列满足:, 求;2.已知数列满足,求数列的通项公式; 3.数列满足=8, (),求数列的通项公式;4. 已知数列满足,求数列的通项公式;5.设数列满足且,求的通项公式6. 已知数列满足,求数列的通项公式。7.等比数列的各项均为正数,且,求数列的通项公式8. 已知数列满足,求数列的通项公式;9.已知数列满足 (),求数列的通项公式;10.已知数列满足且(),求数列的通项公式;11. 已知数列满足且(),求数列的通项公式;12.数列已知数列满足则数列的通项公式= (2)累加法1、累加法 适用于: 若,则 两边分别相加得 例:1.已知数列满足,求数列的通项公式。2. 已知数列满足,求数列的通项公式。3.已知数列满足,求数列的通项公式。4.设数列满足,求数列的通项公式(3)累乘法适用于: 若,则两边分别相乘得,例:1. 已知数列满足,求数列的通项公式。2.已知数列满足,求。3.已知, ,求。(4)待定系数法 适用于解题基本步骤:1、确定2、设等比数列,公比为3、列出关系式4、比较系数求,5、解得数列的通项公式6、解得数列的通项公式例:1. 已知数列中,求数列的通项公式。2.(2006,重庆,文,14)在数列中,若,则该数列的通项_3.(2006. 福建.理22.本小题满分14分)已知数列满足求数列的通项公式;4.已知数列满足,求数列的通项公式。解:设5. 已知数列满足,求数列的通项公式。解:设6.已知数列中,,,求7. 已知数列满足,求数列的通项公式。解:设 8. 已知数列满足,求数列的通项公式。递推公式为(其中p,q均为常数)。先把原递推公式转化为其中s,t满足9. 已知数列满足,求数列的通项公式。10.已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;11.已知数列中,,,求(5)递推公式中既有 分析:把已知关系通过转化为数列或的递推关系,然后采用相应的方法求解。1.(2005北京卷)数列an的前n项和为Sn,且a1=1,n=1,2,3,求a2,a3,a4的值及数列an的通项公式 2.(2005山东卷)已知数列的首项前项和为,且,证明数列是等比数列3已知数列中,前和求证:数列是等差数列求数列的通项公式4. 已知数列的各项均为正数,且前n项和满足,且成等比数列,求数列的通项公式。(6)根据条件找与项关系例1.已知数列中,若,求数列的通项公式2.(2009全国卷理)在数列中,(I)设,求数列的通项公式(7)倒数变换法 适用于分式关系的递推公式,分子只有一项例:1. 已知数列满足,求数列的通项公式。竖心旁:快、忙、情、怕(8)对无穷递推数列消项得到第与项的关系例:1. (2004年全国I第15题,原题是填空题)已知数列满足,求的通项公式。原(草原)(平原)(高原)(原来)(原因)(5)小荷才露尖尖角,早有蜻蜓(立上头)。2.设数列满足,求数列的通项;鲜艳的红领巾 轻巧的桥 美丽的衣裳 快乐的时光(8)、迭代法例:1.已知数列满足,求数列的通项公式。解:因为,所以青青的豆角 青青的草地 青青的瓦阝双耳刀 (陪 队) 八 八字头(谷 分 公)又,所以数列的通项公式为。和、合和河 心新和辛(9)、变性转化法我家门口有一棵小树。 江上有一座小桥。1、对数变换法 适用于指数关系的递推公式例: 已知数列满足,求数列的通项公式。解:因为,所以。两边取常用对数得(收)(放) (去)(来、回) 死(活) (答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设施农种植管理办法
- 规范生物质管理办法
- 中华寿桃病虫管理办法
- 装修人员平台管理办法
- 《流动资金管理办法》
- 装修预算公司管理办法
- 中山公园摆摊管理办法
- 2025年环形磁体合作协议书
- 老虎潭水库管理办法
- 《医学装备管理办法》
- 煤矿防治水课件教学
- 保险业务档案管理办法
- 海门市小升初历年数学试卷
- 2025-2030中国天然气汽车行业发展分析及发展前景与趋势预测研究报告
- 2025年辅警招聘考试试题库附完整答案(历年真题)
- 痔疮病人护理课件
- 2025至2030中国5G毫米波设备行业项目调研及市场前景预测评估报告
- 现代教育技术说课
- 部编版五年级上册语文单元教学计划
- 产品经理绩效管理制度
- 2025年烟台市中考历史试卷真题(含答案)
评论
0/150
提交评论