




免费预览已结束,剩余17页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2015-2016学年湖北省孝感市汉川市高一(上)期末数学试卷一、选择题:本大题共12小题,每小题5分,共60分1下列关系正确的是()a0nb1rcqd3z2若函数y=f(x)的定义域为m=x|2x2,值域为n=y|0y2,则函数y=f(x)的图象可能是()abcd3若sin0且tan0,则是()a第一象限角b第二象限角c第三象限角d第四象限角4在四边形abcd中,若,则四边形abcd是()a矩形b菱形c正方形d平行四边形5设a,则使函数y=xa的定义域是r,且为奇函数的所有a的值是()a1,3b1,1c1,3d1,1,36若f(x)=x22mx+4(mr) 在cd时,f(x)=x2,g(x)=ln|x|,则函数f(x)与g(x)图象交点的个数是()a1b2c3d4二、填空题:本大题共4小题,每小题5分,共20分.13已知的终边过点p(12,5),则cos=14f(x)=,则f=15在abc中,m是bc的中点,am=3,点p在am上且满足,则=16已知函数,若方程f(x)a=0有三个不同的实数根,则a的取值范围为三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤17计算下列式子的值:(1);(2)18已知集合a=x|2x8,b=x|1x6,c=x|xa,u=r(1)求ab;(2)求(ua)b;(3)如果ac,求a的取值范围19已知平面上三点a,b,c,=(2k,3),=(2,4)(1)若三点a,b,c不能构成三角形,求实数k应满足的条件;(2)若abc中角a为直角,求k的值20一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(xn*)件当x20时,年销售总收入为(33xx2)万元;当x20时,年销售总收入为260万元记该工厂生产并销售这种产品所得的年利润为y万元(1)求y(万元)与x(件)的函数关系式,并写出自变量x的取值范围(2)该工厂的年产量为多少件时,所得年利润最大?(年利润=年销售总收入年总投资)21已知函数f(x)=2cos2x+2sinxcosx(xr)()当x时,求函数f(x)的单调递增区间;()若方程f(x)t=1在x内恒有两个不相等的实数解,求实数t的取值范围22已知f(x)是定义在上的奇函数,且f(1)=1,若m,n,m+n0 时,有(1)求证:f(x)在上为增函数;(2)求不等式的解集;(3)若对所有恒成立,求实数t的取值范围2015-2016学年湖北省孝感市汉川市高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分1下列关系正确的是()a0nb1rcqd3z【考点】元素与集合关系的判断【专题】集合【分析】根据各字母表示的集合,判断元素与集合的关系【解答】解:n为自然数,0是自然数,故a正确;1是元素,r是集合,元素和集合的关系不是“”,故b错;是无理数,而q是有理数,故c不正确;z表示整数集合,3是整数,故d不正确;故选a【点评】本题主要考查元素与集合的关系,属于基础题2若函数y=f(x)的定义域为m=x|2x2,值域为n=y|0y2,则函数y=f(x)的图象可能是()abcd【考点】函数的概念及其构成要素【专题】数形结合【分析】此题考查的是函数的定义和函数的图象问题在解答时可以就选项逐一排查对a不符合定义域当中的每一个元素都有象,即可获得解答;对b满足函数定义,故可知结果;对c出现了一对多的情况,从而可以否定;对d值域当中有的元素没有原象,故可否定【解答】解:对a不符合定义域当中的每一个元素都有象,即可排除;对b满足函数定义,故符合;对c出现了定义域当中的一个元素对应值域当中的两个元素的情况,不符合函数的定义,从而可以否定;对d因为值域当中有的元素没有原象,故可否定故选b【点评】此题考查的是函数的定义和函数的图象问题在解答的过程当中充分体现了函数概念的理解、一对一、多对一、定义域当中的元素必须有象等知识,同时用排除的方法解答选择题亦值得体会3若sin0且tan0,则是()a第一象限角b第二象限角c第三象限角d第四象限角【考点】三角函数值的符号【分析】由正弦和正切的符号确定角的象限,当正弦值小于零时,角在第三四象限,当正切值大于零,角在第一三象限,要同时满足这两个条件,角的位置是第三象限,实际上我们解的是不等式组【解答】解:sin0,在三、四象限;tan0,在一、三象限故选:c【点评】记住角在各象限的三角函数符号是解题的关键,可用口诀帮助记忆:一全部,二正弦,三切值,四余弦,它们在上面所述的象限为正4在四边形abcd中,若,则四边形abcd是()a矩形b菱形c正方形d平行四边形【考点】向量的加法及其几何意义【专题】作图题【分析】根据向量加法的平行四边形法则,即可得解【解答】解:在四边形abcd中,若,且共起点由向量加法加法的平行四边形法则知,线段ac是以ab、ad为邻边的平行四边形的对角线四边形abcd是平行四边形故选d【点评】本题考查向量的加法共起点的两个向量相加时满足平行四边形法则;首尾相接的两个向量相加时满足三角形法则;多个向量相加时满足多边形法则属简单题5设a,则使函数y=xa的定义域是r,且为奇函数的所有a的值是()a1,3b1,1c1,3d1,1,3【考点】指数函数的定义、解析式、定义域和值域;函数奇偶性的判断【专题】计算题【分析】分别验证a=1,1,3知当a=1或a=3时,函数y=xa的定义域是r且为奇函数【解答】解:当a=1时,y=x1的定义域是x|x0,且为奇函数;当a=1时,函数y=x的定义域是r且为奇函数;当a=时,函数y=的定义域是x|x0且为非奇非偶函数当a=3时,函数y=x的定义域是r且为奇函数故选a【点评】本题考查幂函数的性质和应用,解题时要熟练掌握幂函数的概念和性质6若f(x)=x22mx+4(mr) 在cd=sin(2x+)=cos2x的图象,故选:d【点评】本题主要考查由函数y=asin(x+)的部分图象求解析式,诱导公式的应用,函数y=asin(x+)的图象变换规律,属于基础题12偶函数f(x)满足f(x1)=f(x+1),且在x时,f(x)=x2,g(x)=ln|x|,则函数f(x)与g(x)图象交点的个数是()a1b2c3d4【考点】抽象函数及其应用【专题】函数的性质及应用【分析】利用条件得f(x)=x2,x,又周期为2,可以画出其在整个定义域上的图象,利用数形结合可得结论【解答】解:由f(x1)=f(x+1)得f(x+2)=f(x+1+1)=f(x+11)=f(x),可知函数周期为2,且函数为偶函数,图象关于y轴对称,又当x时,f(x)=x2,x时,x,f(x)=(x)2=x2,x时,f(x)=x2,png_ivborw0kggoaaaansuheugaaaskaaac6cayaaadyhlvbaaaaaxnsr0iars4c6qaaaarnqu1baacxjwv8yquaaaajcehzcwaadsmaaa7dacdvqgqaae8lsurbvhhe7z0jnb1fve+dcmii992r94k8fcpxvyoxejr7bb2xby7iinav5cqliiakirljjkzimideklafqodsm1lmmvtmmpn93/dlyl6rfztsjez+r791us6p06e7zzl9+iqzph6fvozud3x1v/71r1/a+nqdukd2bnnu7+kg8wlf7u/ionvq1a5v+lhwymhzdomtw4sfsycodp9vrwswrti/vucrfixwv0vp9d9xo0b3vj82l17t+zcudonxy8fcxa4v4qd5cuxu7/ir2trq6xfv96nxy+wlhbzvn27g0uhjak8yukqhjakgmfjkhiwpgkejalwwjikhiwpyfisihgwpmjhssoylqscyukqrliscoclqwbykgqgjakyyukqhjakgmfjkhiwpgkejalwwjikhiwpyfisihgwpmjhssoylqscyukqrlisckc6sbw6f+objalwwjkkezakgtgeswpey4m8/trjcudaafdivlakfq5lujhcklqw2injht58wfauxih/dvu/ywndtpvoxtu7z/xbevnvrrakfq5lujhcklqw2qsnvdtuk8en+oh0onbbzvjcz9yjczhklc8xmbakfq5lujhcklqw2itjzvs8x07/4+ny0shhy50p/lpmkql7hwhu27dpxsgdtwvxksppb5akwmfjkkzykgpgeyup9plus0/jureek5s3b04jqz49e8pdd90lzwvlkt61a1e54iil5imppldxxgfjkhywpgkejalgtoeb80gdbskll1zqxlk47777peohdvloo4+qeofonewtn/yk0mu+scqvdktsmcksvddam0ndefsdcsbp6enrym+epxlcccfjrbfequkqwwoppwy9qzjxoscpc0czwcsl71esktl5f5okdh06zenkbxdol770juvgs5cudy+mgcd14403ujgrioqknjcmtwvxringuovmiathq0tsy8ameclo0apvxx3gjh2bfo8zfcpvysp7nik3ptp6qn7gxkblltu1nwwc5xghsrmkrqvyj2bdxb5xew9hqz9hplvnfwry7l4wjqqnfefthllppvlk5tfdffxvgv7s6aeflt/85jevxzv06fd3ao5a1vbe3zs/f777kz6ydxjmjelrae1scrixnw/i7ymkvpltuji9khy0scwhez8uq7vhzb1dpugkqtlldtseffzzdq5dj/p+nx2tcgb2ygfoy0r79kqwakj79aq06cvnujrfjh07khiinhbaarlepemkluh+/fvdo7ld696svdckqvk6fo85kirmdboaplry40axg0p7htj/0y9+pegib+ree0+ucepguwcsgkq+/npr35aeukqzvrvevmscgyktw7duqk1q2pok1q9erx7k360n5lyghukvywgfsyzz8gdd9wh3/+9xvzdrgwqb3xgkqeeesrvjcdah0p60mfo71393bs2ohg0hfkusvitttwhoz26emx5obtn/qumui/npcsmnn6gfnboy+d333fowkx/yscru9nvmklsxyekqgo2rppr06ao8klwksgrnmjvqhk9jwoqjmnlksdcwhdatcocdoi8rlqsc0d5icup9y1/+kuxgqllo6iehhlcgb7p06al+fgpluugwjbujlekfo72rfpqora11y6jicncfd999v/3eu3ev+lto98asvdgsscuis1lbai+ellkmspmux7un5uvusrikfq5lujhcklqw2uoylalnuswajalwwjkkezakgthesmrrfevkulg8kuts4bakfsmssqxdellbscqvdktsmcksvda+tcrv6ec5f5akwmfjkkzykgqg9ascyukqhjakysshhaty8rrytwtjkhiwpmjhsspgtbes8imw60mfw5jumcxjbcosviywjbuos1lbscqvdetsmylv1dliat68ee6vdots5bmkfqxluugwjbuj2htjotwacpjejz6rlar+ctfqr/s4ondotiblekfw5juocxjxyj2rfjs9iw8eh+kfegkpbp5wz47uvqscoylqxbykoorbzgk/lpivbglyzjeud4kbficed7ey0kqgjakwmfjkkbks1l5tpwdudypkvomzfr8lit1i1/8qv1fbip3yjahovewjang+j4wssof27ckfsoolielk5ztbymgtzuwvjzyo3dgghskgxw9kcdy1dpppkmqohsssqxdellhwlzsmfsrflisyhhep0rquyabj5ulsvvwvsrf/53n5zcvislzesz4jscbdgwsspxb6eyjgxe+2isvk46cip1pgjefjlco+nuqzmbs2xjo2nsjdewaocj7arzuxnn9xvqoehu2rq0su2bnk2lyy/u5557tqzoneqmelnrrrtk+vtpbiyfj3/840msqk+qgcc4x375ztwo5fwkwnnpp60+dpnngpmhqsigny2kzdyj5p9h9kty1unqejsmfyx2r1jusq5o/zczsi984qvjgtav47pyjvqnlfirw5vxxumetugtfktc7+uuu06op/54of/88xvhat7rxf7dxpiefiryxrvxqarkayj33nuvilm/kujeb731lhslxpegqsjxvf7663ljjtdkc3oze8qfbwlmyi+fslln60mf5ev37kiqvjhmhccsva7aql/xjw/ie+9p8z4vvod72rm7eopeboagpk/b6w6yuppr80efjk+zd/+rd57bxxvjollrggyzwkmctfet44wfjatddek1u2bfhh/uiqpkre7rzztjcwjgj090zdjdldq/cvvvii0ifldmottz7p/oofr8utigth25mqhmcoozkk8jthqc+99flvreprjd/96u+v4oa3l3nmyu8+xpkii0ze3/rwt+tmm29opvgdd0wkz4g0xbt2dy8ksmp736fdhwbmaayt9phu1afeg2+8ox6jp1tvvvx99kn76u5568hlun62uwhsdy8ybzqkklz5wchdhw4l45zdmpnl8csvv1wqkirky1/+spsvlsxpa0ac3qc7ezotexocmvbo0up91ue9jmuxok/lryyphs8vl1ddrdnjoxf7yzb48gdvfswob8zf87wgjkzpax0fgm7ef/9tgvrizeu4u1lxgsxlkzgkuplyv9tdulemui8kj9fgfglsem4rmn9jjh/zwubksegdh72qt40fdotkrfxeoompsjhex/i+l40epokyeuddgze5n1awjy/3futfpfcrwxencjhjpnb6wes8urwtmtx77vmwupb5wxis4n0r42kahdewacy3/g4al0rnoj8pnezdqtp8atngl/p2uhxmdbe7x/+8idy2223kzkc6dhoen3txrdfraief4hfjbnxdgvdtcyuhid4dhwzbvzmppc877zz5prrr1fxu045jskh186zm0fdd5kiorphy7vpppvkrlpokrfffjtzjsazglshtqcb9njll8mnp/3ppbzkrvrk4bxo29tujeuwlenmrtkxpsqvr+ulzzznwurgvtxpou56fs0y8muw4lqxrp0itl6zzs1sewg5aeski8490s1pcvqo6upqrurca5abvmnzoyceunohpeci1k9xdnsr5aamwg7izhlihxy6/hrtms7l1cxn0auug7ypnrf68nalwcc8imib+iyng1q9m3jqdn2t1ge/s8mbppcd/envvy+k0ddqxtkswv9tdoywzhqhzrqcygdwi85lx6vrrcfjx5sd6005ikmh5oa86tlh4jj+hueg/pevtnsfn3rakmlqlu5wjjzfkig+hmfq+emfowx+19fxy7bhw5qrege2jizanmqhm8rmhnea/yc/+clkq2hsbftn9bu1ntuql4wb5xmf0nceysobotsfmdf9yfcd31zli8p/+q/qgbrix/ta19tizc1hpyeohginhbaawrmi7yyqfzvr36lzgavuuqqpbyxxhjj8lotb2r59913q4rnwuqhlsvaietrsauvjw7qa4mklboa6jigsxzjis0ez16lpnschkheye5c60mbplco0ulrccjrq1cvrew0qnjqo+evcroxxy72k0pxmbiib2miazk06vpxxiveipmwiu5d5fp+kx/xeuxg4upc62p06neqpbagvtaj99zyibnpsitdck2pd2xlyzfixiikhoshr4/tkhdewlxcn7tuc2nrb3gtd11m5mcdn+vgeoi0zcitlyyu5oba6o849+q8mmg5sf3yqkbocx/sik9pawlsdsrkev0muw4ejkycwh+6xkijbtboshj14i/l0/wmjq9cmfzdqbu6kbsqiiomukz2kxecdtduj79rchegxle0ra3ozudjocygnxt6wiqnhkxhyz9ykibzujpkhtspmwewkb2/acz37rnnjrt7knwymwoscldxdixdujqodoorx/1q8onkzoc2bdvutqymiwpx4ljt0qwom3iohjco7lzqnutuzaiqqllpddyrd4yypwvapuyx2i2nrmimr8uyttm4d0zpnpex5eaegbzkpa+lxibn4gr+uy7kygtc6fkxv8vbpfcy/osgordxcvdkjk71gtxa68o0dy0hoqohax1oofsehz8+sa+dl24ixesabr+a+2ox2ta0hlqlxz2xla4l8fvlwzhmkd6alomhjsfqhdyhcpawtwxs2ruro168cmibj6ablqcpuexdy4g+tdm4b7al9whah1cf3b+i0njwdfcxkckd0cf9tm/f6sbscvtgppaeuayg8fqjgn9aivp5ou2rr74qz599dtkgoe4dj+cc2td98okyqlzu3bsnsyp05pju/fffr4gmmndcujqwvpazlc91beinjy+athwztbxpppgeanbulgtdcfo8bg2fctmgefqgvzjpzlz0gan5euilp0j6v7zma828+p3www+rbgtq12ozzbw6duyyiycua+nntmabj433wh2n0ffaic/ax67vcfigrc4rsa5agm89qky6geu8nncljutzzl7emnfex7ucecx/zbefv2v98tlgt47rczovyi24vpbjzvvwywtzgdcvhtfz8pjuhna2lccpkifznvadkvieixn4jbrwuyl0rnp529/+5h7xb4wfpaofonj00ucz5isk9nmmcn4lcoisligniht42ua7vus+0csvdzbkzkkri3c0zvcgkyjed3hyk15ruepxisr98mxnktagr3zyc0olsrulfiqvh841spkuhr7prdnxellewurluripulixxnhhojfqxefswl68b90t04hcurjvnpjcyswytl4kfwqsfsejkbqn65vf/kzap0yii6kjrvjxqjnukd4lbz6u9lzibjifazkkc2ibdrtjwzpjczz7dpg/ej6smlbstjrvtipw9my9vic/y84v+zjuz5491ft9888/7x4jrlyefkbrwvidbobgr1jeozzjcp0ywkvhovxgxh+fppjbfjlkb1fikldsofiklqtyldme7u4vc1fjyixlulmksvjae1khwj+qxe/tla2z1sms6iuys/dm6tc2y1gz+9qoaxxipdq8vcfj/jzoarrvy8afg2x/7swv13haj6tckp0bt172nb0ab3odj5okqbhiigf5dzokgmq2syprmf5cushjhekrxe1s3vvlqllzzaycl6si5hn0xt4kfqvhg6ty0vfy2mks1k71o2rb5xwz3w201d9qlymerzdrt46wsx8di5o6tzioh/ydlb1rd8h7czfi0hflzu6/wvjy7ycpuktsbl43soofrpezb89uphxwygjqzurwjbinzvrmgbe2pgb0cldjdsrjuod8mbfhmboceuqpoxf3ggcnuzmgmu1fx6inlsvakicvbw3vk8ofiqswfbkipwvz+3bsl0xdfyosgvcj/jlkz0ok9te6gfp30djc/66snbzknjzvkv3bem+cpi1jcedq+wdl6oqpsnvlbsvwc8sxyohoy6xp5x2k+xe7s+wvk2two7nk57r0srqgm1+2hhhl4dxxxe1samps8ji2lo2k9awr11g5+ccsvdassywjkctlnuvcpakvo1fkugfhyduxvi3dz35jav/god9ov27bsq3ssmgnbnmwvtzvzgmnazuj32kkpweuqtaj5+cb9x3swir199fjy197wxp+6w3lnjxxlzg9w/bigzb9ks3hd1i38iosdjlyatdhhbekypau0ovgedwbsrucs1lbscqvjnhjkt1g/elkv1kusiuds3/+7j35z7v86krnuc6aflcp7riob8pkvhpjxeou+9eto47tzi91ljyhfudba+u0xml8yxqnuq5z3l+kr172pk4ostzentytkwz71sx7vn3t+twk+jyzkur1yhhtwgypgurr4k5ufsybakfqxluugiqllaprpzazkkvlku/ezeufm2l94ikyeukhlvzparfxop/a/tlwp/e6bm6dpbhx/upyymytllsrvkgoqdmpfm2w1cuhqhqpt3taoj5scnp0i8wbnk9utvjkf2quase7dvxcdbalyjmvaedascqvwbmzgssoylqtcuzanlaw9azi6so995yasdryraa9mlbhpjjxgr0zi5d1vmrnhjhw8zzoxa62zb8g9yvgksjuul3au2y6rp66wox3nypgxxsuop5qk9sfagfnosgkoqxfyd7nryf6njr87jnakpal8dzillekfw5juoolp7qxbbha+z/neaa5fkjxda6tm3lq1eobvazn7tjf3g5pl89jntlcvv7fxl9i8kand8budhxokjum5fwsbxb4dq7fl+unrzfhlihn+armu/ajmzr5cxivglk9bvl8ijirjfqo/krmkfqxluueohksujrrmuh3ndpnaa5qu314ma64dqlpx4wapk1xje2sq92xuuxbejel2nittzazpadkv7kl5g0tgdy89wqley0bclzluiw1lz469sm35zpndz7ymvrfuun+ph1r2slbkvry/p7uxub5otytlb0tswbakfy5cpalnizbl6kdhyzvffln6xtbtrncalcvhr5a92/bint17hdvpsvon+1cjwxs2z2z291i2gm3gved4julbwqx+zxc+21ndzogtq2xoollqdrfnmdx0zt0p8iop/burjalwwjikrjsscq4rlwlmmzbd/ruohavm4vgg1k5fk+m6j5fe/mwvhxpm6olt2lxykcge/6ze/ehk6rsabsk5sefun7lry2xpj81yocrb0rth2rvgdyujjok+/cmflz6k4l4bknlqgz5wjjuocxjbsnukgjmgwjzpkjz3rt2yvqza2vhxuiz03mmwkq5+kbbmr3xdnm+bguoxviscsh7+w/i6slr1mwba+nf25s6y3mdjijzhlu19bnc+jb5upjzxnh/wbjkhywpiirubsxakbp9zhouonxihzdn49slqkvt1henokredl0xehzxlfitq1l/yaplqtc65gnqcnpigpuqpt27vdpatzmtf77rbn5+ajvpzz+jq1wwi8nlskh1j7wrccs1lhscqvjdjgpiitudvjurxzy6wbs3c199uocqknvnv4rmxbvu0rjojpzmmhjij1pjlitfg0yr49+2xrim2ycvjqmflsvbnquk4l15fk1h7t1g6fsqtualtcsiqvdktswyh14nzhfecohqe8pbe/7bu/7fwfpqtlpcwvkfwlsxu6633hlevc45tknk0hkkikgb5uaf6kvntezxy2o0vy5cbh6ifzxhdklq4lekfiypjedtgkt6qjpyy/ujx1r5s8nspwjhnj4ojpqthfilavd3n0xps+ccjpc8o7lw5c9v6rpjflssb/66qst1s9ep2yydb8z1wpnlyekqhjakglhowdn1tm/xxkvmvenb+tms6f1fb6rtlxasteynhoystscjrvswppilqdztutjkmjsjaiij2yuy28rvy9bso7ny3arztx5xik2escqvdktswyjqsb2/d59sml9bbqi35rkxanlow6mj1pibsxvnhtghhw8hevpuefv/cqznzz5r8ytldqklrugevbakkzqbpche0+hn7mbhgqxpqsaz1noqrjm2rs0g+soq0vxbu+8udukqca7vo5pcdwvjkhhtkatyqw8/kgq7etf6frvvkno/7s9naib84dafagslp2tzpapbmympnnmlcm+l+vxi0sapocrx/mmgew9q6uvtkzoecwfova/vzeokpdirznc5wpjumd4mntshq9n3ogebe1z7v/62ug1v6ahwbf7ymufsmlck1d3t+r95kvk7v6tay0x/ftwk1wqallw3e56fohzryidlqh7dvtjiscosvda+pn29tp2zgjlla7wivuoehpqbl25rr6tkwl/hlcevk0nl4upcgceddjibs+boevimtnmrhcam4biu46xrz7uqf6bz3e5fbkl5vwdec9gpf+2fpilkzkkqwlejro3k8iawoxa67ffvpdqsgoyfiirc6si7gocyjqmwxhz2dqpi0+gnnniieysbo0ns4ffzlgixu+8v/dr2ytzh8liy1g0copdkekyvclrlkkiuvtybhmobpkanv7cygbpm9jfmvmkt2rdjn2xaslmmvdrzbcvn2qbtyxnbtgcib4m6jkikjw3w/xdnuiyk5hpqjjjvdri+hq4ubsihpl/yla+0eziydsb7ijbo44ivg7c8uykft7zptdpubxz8kymhzunbjsm+mvpss8+qugud9arssh+tqqs+qk4wvy9u40xsgckrkny+yyvmb79bfaa8qy4jkilh6aefrj6ddn77299kbw2t+q3bz8m94zprrnhppsaolu+88476hhlbialm+mta5zugalltnpeeevlvdkuwumdrlxffns5+8bpppmirjfvrusf33nmnjalsmcvf/b1j9u6z0xoqldw/ubqfbljeomnnyujlblvmwaioczlim+dnn3+ndu1ydatw+xssy/nco+hdh2aeficihfkxycx+v5emympkty30h2z/i67xycroznmy/j+42xu06nk+b3lau1kgozrvcstckfb7u7nndntklq2ohwupcjnl0meflap8o7hmu2navi1qer27gwnj3+y9rvcd8cesthm8p3vfecrd924g264wt0thd26dzottjgx2xz5kowdozbzudc8jrs3qt+at6pryvemxxhwrel3fexpwueom10vvhk8bt06rvlkv2bngtm9o7hfmtcwnqs/nwcrjazexw7gnbzvt7wlrq5dvkzddw+xpqzgzk+zlaumrfldwp4/7i8ljyxiel980mrllsrxmtigtkyclaesb8hjlghpvcfjdzlmfaxyssxjyurfgvopjrbscrz9awzzsix5es30qb7ohvnxapfd68mrx65du5jfxeza8uxhbukpozytt8rbteiadb2f/hoghorjysf90tfq+jdlic+nntu3j8cauyagug1bykldzz6uppx7odwmx5xjnt7k2lqpus+kia0pbwsu5uzoizx2sb1oobg2yr+jelhdaits+tizc5c0vnigfs57rw0rrf24rly69tz69fj1uqlkmhwlhnghtql1wv+ahovwre3afvfuuvxkqzc8avtocviwdyk+sk/zmuxgghkqxsnzufydfddyoouvy+mnks1lkenvldzlu1wjvl5rksudb8nxv/516flkx+v/+on5df7h5bbtw2ritcqzeswediwrcgjq3ecey6+fsy5jnbuv1wlyysbzsgqxvs1q1mhj47vhuzjz/+oknpxytllwytsq5dzedaehnz0cjvfaql9o0skr1uirudaqshrlfk+5fi4jjske9rpvrwjsululfekyofhitdb5zlawmp1fbuswxpchnyvok63zckxihhad/bmqi0ria9nlqakhukzgcpdbviypgci9vgknvtdxmvll9ylsp6delcwz1cyvhsj3hf6n610lg5wpvjicphckkpq3hsdptkyruyoft/ea3hqyqvhup6qxi9qkp7lsigqyok+0uvyvcxylveneen9rx1so6yocnk2hpdpkq00i1djqzvplygvjnyxudwj5ra596db5s6ctsoy0oo54fr1r1cqsu41qkprx/dnndk6z9uxvtxws9vvaqk5k3srly0vtvvab9bujlykcprvw15rapnwflqq6/kdzdck5uljtylgxjyvoto8p2ezhwo3qirwe8k8qrs49rpdaosq0uxltlpt3+v2qe16hxylp1tqjt1h6z0wvvdidf97ozentrna0vqhdmcouyxykvitegq7kogdplyywwozqyvyghlqnziuffkmzt2hqlidevonq50zhbyil75dpumh1kh7kmy5ty3enbcl8hr3rxmqdnhttosx24ahft06uznxlxkthw5svs6unxi5a84cpq7ccfuysvle3imdgzmlwp4qxuy+m1e2rohnvlvu1og90umv1b1rpsauidvp06hla6vipehs8uadonybl9h8vp/vygv3fakipoonjgkt+la4qplpkxvmbz6cui89vi9kfgmstlhytbk+qmpp2wllcq2hvrjoaw1/ast9uhimatu0cebfvizkgfbqwcpuxy3zgaibcxgcrvf9/b3erpejpq3q1vepuocmrxtjfvog6vevhqnxqogog0rfqwuu3ku93hqx7kp7aaqv4vjf8ok/puy6ftyhyl5i2hb2g/1m45cjn5r+lwp8iah6ak72lvlt6e9ofxk/egfwucy+kvvhkstsdqvcwtmpomq33tk7+sfdjqwvogfzol3grbjvvddpb7a+4uvfe5wo8zj6ypmrscoph3p/8yfqktohvvvv19tqlv/9z7fueyr8h0+pnddd+ee46xg3soqgo8pvlww2+pjwe7a06dpe2arjaqjey4duzomar7sj+dp2h9fb00l3txrbll6v1bx6dyd+/2vtj72izvpui2vmcj4yeo+oxpis8o83vovllkjg0bnigpas9k39a9snd+imloqfnpi+49zdjuawxslin7ey9mmhpdl5zbtslwo5uc3p+ztn9v+qzsp0b5knxjbo6motjixahpbnpxbl4zqiz2gykllw9sn/tiqua+c+fovwv4b31cdp6g5l10wrjhjozegzx7dxs2tow1v2wpfhc4vekdodabt5q6ujrlpadvfctwonlvkn3s37lfzs2yra49sg+/ym/i+enk+0fxpoxrb92xmwony4z165xxxpmuorbpqx8joag/6ox01ck6yo3pa6+9ph5odaxu1lblilurhd22ob7qcqlrqje9+/ep/kkxvya9+5tniafx79m+w/bs2apozz8/x3aud57sa9162bxj1tlyogugcg4cocgzj09xctfn6tixo5svlamxzpnjzyj911rvy+qvjgewabcsa3bswyktdy/cc6bpvnlp28i+rju2qflu3toi5kclr73grqwbvq70gb4wzlmgyqtzmj51mivhptm3z68qd54l922e3cwdxhso/x/tx623wzxzkdtu1ap0xdt75hwlx4j6bvntn/4k3bu9qolchzolxyapab/rv21wylavwzcnbevrg10/aeptpkxv6vscxe5t2afkmd59urqwdss12cl5r2xeoa5t2bvhytf39jx17z4dleoti/etjyjpwtn41m0qlxiqx7nqrdtx1smwty4+hdl2bd4ti+yuleceeurwrvitoif78hd7yse09+rauirjb1ochncp0da5j3ko7yidwg99bnoatbjh5yzkovlgoq5x3t3xg1bgen1118mzz54pdz/8shs0e9pfywonmr6tmq955zvxffebrwqoiwjqqgkogpazatrokmipov1swhw473pmim6aes3nzgt1nwhkigeu8j333on0a1arpx8ndsii259ysyybvkhqgvtcpvx9jwf5mbwyy9to1sxqik+gmtbwok/hj4d5rdkhw4mjorldseb5ute2qrrppfwu9orvsx2bmilk4dqiqon8azr6tmpxdicosfhx1gw6him03rhph2a9ki7r6aaxngxjkivk7y+/li6jxxe+9bx5ddlrd6mxkyc3j1zbqhyy8+veo4sqx0ksgz+w5c/j7qztu91ccju46slsu3jnus1gfxig/6g0b/8imfqacrnrcgzujk4atx12p468usg2kfdixn8gpzwi2hhlcfe/em1wv1ooxgwgjttttus0stb3sza7t77t8kbrzxrjnttnouqwqkzcd/do36nznhppsbc57ql112mrlmd8n7bd04rcdyzdzwnro8yuszsfqmz/r5/qpuhmngkbxjw3/961/vuxqkruwjsgdifbn71chp6jhkbdaxmryuaxobse3bf2vwntvgjrsn/fv3l+9/tprbikt+9hbs7x6slkf7kjmxduycbp1/of2aarkhgyzolwol4u4yr4bd/+c+vuwe7lie4msxeymd5vo+cqtrtr3ny8yfm3qwb1h2ibfrkfpu3a+l66tonjwwzmksnv0k4joekekxxe/42gzzwnlu+ycrkifvqqw8pz60yon3q8uavmkikttbnn3227njfgckfc2ri6wxsavjvxscukza7517a07hr166kmqorznxucop3mkrormdbwvamk1raqn9kjgk9nffmyp06dvldawbceqld8jprkwopcp6mmoxh+4olqxarhrjhdxrrdi/cd18yobjjgw8oyqcjywu8/x71q18pi/v73190uoh5grvzx3zxxxlrty9ohaha2oxekb2fya7xgnv6prpypiap8pbbb6sjnhrmo8kfiftmrbpn7ih/kppfmur/bqvlkoxfznrisqsub5vftiorp+n72hm3eaikb+flzgv2l5w/x17b+enj4yvj94h1wacyellclmct/uabb5b77rsvzd3mckfmilhpymndig0bkkioki0kwpsuiycvbzarnpo54nzmmdfqneyjsc4qmp47n+/qf3u/tre+bmgm1r81savapstqijn/hiap1z4mjiexpsmmfkt+/pppq+mqr+e/mj1qui+rvjhd47en49jssxas8obbvrpmerp/+umn02wjhffkz7rtq1cqm8x7mbmbxfyjka0xxgr5var6dzwyzflwnx6oyeaxjts9yzc1g7qrrdnwrmkqxifklvkwe5gxihgl4ikjb/bj+7pccohzgklsyxk7f5kefazjk+qcc85ra5n+cfdskizcqfiy16oppprrv0xa9mrjdxqwy4spiff6hn/8csu3jiunpfhyy4+5dsuh3tjfysc7/lzhakm+vcrvk5iucgy3iduykrxdvixmr5niade3syx86jwbsquhueez90lwj598uizonjxgugav3rxtssc6jxpjintdrjpfma42t1xc71kt54v0+1mu8nnxxrdvv1vrnembo+74tvqska/c2kacpij7ptkqdbxy33vvvwp5gy/ccwttt6gefkdcjzvuonxofbmzqjgf0crfw2gmht9xoriefe+rn/70p+q39929n954i7jyasc6jrqapdcn3nbnix4amqryre5cdaod3hhhhaqra5kqrkxua+hx6h5ejskvdll4cp7szz9tv70krvmw2/ayeejd/euhryswjbsks95rpqyw+gdrzuyn0vlxiicb/bnan662+wba/4yzxvuhkt2plga2mtg0fo08ch42mxnjmy3jzbxtusugkroapbcmgxqmdxtcxbqfkpsfdfvvvaprb5qbm9niintbamfesayb6jvs3tkivitzqxlwrvpu9vok/gtk9rh65mhw5ptvqrgmkfteyl2t+7gqf0lp4nwzjals2lejjatq0/e+9730cchiae16uvrl34y/nqjvp5qzzvgavvmhxpkiphfffbepnxgnxsipterj5kxfvsvctirlik6s8ms4mqq4x2wh7wr6pyucqctf/f1kwkhyjqgnxb3dpcobuad9oszpsahf6gdhqzu2dcpqc+/u5aay5ko7hf6ajinau5wzvybeqzm4sqrdp/daa0nzvz4ugmaggfzgwxphfbqccxyskilvtlabifixwtzapcgbqyb6tl1bcngh6/s8jav69+6tbcoofiokkbf7orxxevj+okok5qetphgkxmnyuukqccxwe+mll5in29vda7x68frrr7uxyatytail1/h4rl+o/ar5xlm6foukvmazzpu5id+tpdgxt+ctz34sx2asr8vrr1i0nrb75qpdcgn4c8nlti8xamfmqr0ndzzs6ebur1j45pypa8ugkzyigqmhqjo4zkgko9ekbfjlivw4icvokskwbr311rqukr9jky4nfja3xteytl9ggzr4wsgplq+r0ltk1cfmty5sds0rb8zlguilfzvba+rdjcn+4iuw4gv6erdjodpbb789tfd+jaxyemjwrflulh+sn7db+l3vv0avnmmm91lvbwyitpkepphee8ng50ds1afrvuigglhjcntmtr1tivqik6rmgwvt1ppswbobqmxj3klkijhjigbrs2dpn5yajixr7gud0aq1y6cqrzfiqs
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版水电暖工程绿色施工劳务承包合同示范文本
- 2025版微信小程序商城用户行为分析合作协议
- 2025年淘宝店铺美工设计及市场推广合作协议
- 2025版信用修复与再认证服务合同
- 心理健康服务在社区2025年推广中的心理健康服务与社区心理健康服务需求研究报告
- 2025年城市轨道交通项目土地租赁与承包合同
- 2025年文化中心临时活动场地出租合同
- 2025版区域内授权经销商销售合作协议
- 2025版生殖医学手术医疗事故赔偿及生育保障协议
- 2025版淘宝店铺店铺会员体系设计与运营合同
- 部编版三年级语文上册说课标说教材
- 医德医风课件培训宣传
- 【艾瑞咨询】2024年中国健康管理行业研究报告494mb
- 2025java中高级面试题及答案
- 偷盗自愿赔偿协议书
- 民航飞行员招飞心理测试题及答案
- 《物业管理条例》教学课件
- 篮球课件介绍
- 2024艺考乐理试题及答案
- 资产回收合同协议模板
- 基层司法所规范化建设
评论
0/150
提交评论