




已阅读5页,还剩76页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十二章概率 随机变量及其概率分布 12 5独立性及二项分布 内容索引 基础知识自主学习 题型分类深度剖析 易错警示系列 思想方法感悟提高 练出高分 基础知识自主学习 1 条件概率及其性质 1 对于两个事件a和b 在已知事件b发生的条件下 事件a发生的概率叫做 用符号来表示 其公式为p a b p b 0 在古典概型中 若用n b 表示事件b中基本事件的个数 则p a b 2 条件概率具有的性质 如果b和c是两个互斥事件 则p b c a 条件概率 p a b 0 p a b 1 p b a p c a 知识梳理 1 答案 2 相互独立事件 1 对于事件a b 若事件a的发生与事件b的发生互不影响 则称事件 2 若a与b相互独立 则p b a p ab p b a p a 3 若a与b相互独立 则 也都相互独立 4 若p ab p a p b 则 a b是相互独立事件 p b p a p b a与b相互独立 答案 3 二项分布 1 独立重复试验是指在相同条件下可重复进行的 各次之间相互独立的一种试验 在这种试验中每一次试验只有 种结果 即要么发生 要么不发生 且任何一次试验中发生的概率都是一样的 2 在n次独立重复试验中 用x表示事件a发生的次数 设每次试验中事件a发生的概率为p 则p x k 此时称随机变量x服从 记为 并称p为成功概率 两 二项分布 x b n p 答案 判断下面结论是否正确 请在括号中打 或 1 条件概率一定不等于它的非条件概率 2 相互独立事件就是互斥事件 3 对于任意两个事件 公式p ab p a p b 都成立 4 二项分布是一个概率分布 其公式相当于 a b n二项展开式的通项公式 其中a p b 1 p 5 p b a 表示在事件a发生的条件下 事件b发生的概率 p ab 表示事件a b同时发生的概率 思考辨析 答案 答案 1 袋中有3红5黑8个大小形状相同的小球 从中依次摸出两个小球 则在第一次摸得红球的条件下 第二次仍是红球的概率为 解析第一次摸出红球 还剩2红5黑共7个小球 考点自测 2 解析答案 1 2 3 4 5 2 2014 课标全国 改编 某地区空气质量监测资料表明 一天的空气质量为优良的概率是0 75 连续两天为优良的概率是0 6 已知某天的空气质量为优良 则随后一天的空气质量为优良的概率是 解析已知连续两天为优良的概率是0 6 那么在前一天空气质量为优良的前提下 要求随后一天的空气质量为优良的概率 0 8 解析答案 1 2 3 4 5 3 如图 用k a1 a2三类不同的元件连结成一个系统 当k正常工作且a1 a2至少有一个正常工作时 系统正常工作 已知k a1 a2正常工作的概率依次为0 9 0 8 0 8 则系统正常工作的概率为 解析答案 1 2 3 4 5 解析方法一由题意知k a1 a2正常工作的概率分别为p k 0 9 p a1 0 8 p a2 0 8 k a1 a2相互独立 1 0 8 0 8 0 8 1 0 8 0 8 0 8 0 96 0 9 0 96 0 864 解析答案 1 2 3 4 5 方法二a1 a2至少有一个正常工作的概率为 答案0 864 1 2 3 4 5 解析设该队员每次罚球的命中率为p 解析答案 1 2 3 4 5 解析记在国庆期间 甲去北京旅游 为事件a 乙去北京旅游 为事件b 甲 乙二人至少有一人去北京旅游 的对立事件为 甲 乙二人都不去北京旅游 1 2 3 4 5 解析答案 返回 题型分类深度剖析 例1 1 从1 2 3 4 5中任取2个不同的数 事件a为 取到的2个数之和为偶数 事件b为 取到的2个数均为偶数 则p b a 题型一条件概率 解析答案 2 如图所示 efgh是以o为圆心 半径为1的圆的内接正方形 将一粒豆子随机地扔到该圆内 用a表示事件 豆子落在正方形efgh内 b表示事件 豆子落在扇形ohe 阴影部分 内 则p b a 解析ab表示事件 豆子落在 oeh内 解析答案 若将本例 1 中的事件b 取到的2个数均为偶数 改为 取到的2个数均为奇数 则结果如何 引申探究 解析答案 思维升华 条件概率的求法 1 利用定义 分别求p a 和p ab 得p b a 这是通用的求条件概率的方法 2 借助古典概型概率公式 先求事件a包含的基本事件数n a 再在事件a发生的条件下求事件b包含的基本事件数 即n ab 得p b a 思维升华 已知盒中装有3只螺口灯泡与7只卡口灯泡 这些灯泡的外形与功率都相同且灯口向下放着 现需要一只卡口灯泡 电工师傅每次从中任取一只并不放回 则在他第1次抽到的是螺口灯泡的条件下 第2次抽到的是卡口灯泡的概率为 跟踪训练1 解析答案 解析方法一设事件a为 第1次抽到的是螺口灯泡 事件b为 第2次抽到的是卡口灯泡 方法二第1次抽到螺口灯泡后还剩余9只灯泡 其中有7只卡口灯泡 例2在一场娱乐晚会上 有5位民间歌手 1至5号 登台演唱 由现场数百名观众投票选出最受欢迎歌手 各位观众须彼此独立地在选票上选3名歌手 其中观众甲是1号歌手的歌迷 他必选1号 不选2号 另在3至5号中随机选2名 观众乙和丙对5位歌手的演唱没有偏爱 因此在1至5号中随机选3名歌手 题型二相互独立事件的概率 1 求观众甲选中3号歌手且观众乙未选中3号歌手的概率 解设a表示事件 观众甲选中3号歌手 b表示事件 观众乙选中3号歌手 解析答案 2 x表示3号歌手得到观众甲 乙 丙的票数之和 求x 2 的事件概率 解设c表示事件 观众丙选中3号歌手 解析答案 思维升华 解答此类问题的方法技巧 1 首先判断几个事件的发生是否相互独立 2 求相互独立事件同时发生的概率的方法主要有 利用相互独立事件的概率乘法公式直接求解 正面计算较繁或难以入手时 可从其对立事件入手计算 思维升华 2015 陕西改编 设某校新 老校区之间开车单程所需时间为t t只与道路畅通状况有关 对其容量为100的样本进行统计 结果如下 1 求t的概率分布 解由统计结果可得t的频率分布为 以频率估计概率得t的概率分布为 跟踪训练2 解析答案 2 刘教授驾车从老校区出发 前往新校区做一个50分钟的讲座 结束后立即返回老校区 求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率 解析答案 解设t1 t2分别表示往 返所需时间 t1 t2的取值相互独立 且与t的概率分布相同 设事件a表示 刘教授共用时间不超过120分钟 由于讲座时间为50分钟 所以事件a对应于 刘教授在路途中的时间不超过70分钟 方法一p a p t1 t2 70 p t1 25 t2 45 p t1 30 t2 40 p t1 35 t2 35 p t1 40 t2 30 0 2 1 0 3 1 0 4 0 9 0 1 0 5 0 91 解析答案 0 4 0 1 0 1 0 4 0 1 0 1 0 09 命题点1根据独立重复试验求概率 题型三独立重复试验与二项分布 1 分别求甲队以3 0 3 1 3 2胜利的概率 解设 甲队以3 0 3 1 3 2胜利 分别为事件a b c 解析答案 2 若比赛结果为3 0或3 1 则胜利方得3分 对方得0分 若比赛结果为3 2 则胜利方得2分 对方得1分 求乙队得分x的概率分布 解x的可能的取值为0 1 2 3 解析答案 x的概率分布为 命题点2根据独立重复试验求二项分布 例4在一次数学考试中 第21题和第22题为选做题 规定每位考生必须且只须在其中选做一题 设4名学生选做每一道题的概率均为 1 求其中甲 乙两名学生选做同一道题的概率 解设事件a表示 甲选做第21题 事件b表示 乙选做第21题 解析答案 2 设这4名考生中选做第22题的学生个数为 求 的概率分布 解随机变量 的可能取值为0 1 2 3 4 故变量 的概率分布为 解析答案 思维升华 独立重复试验与二项分布问题的常见类型及解题策略 1 在求n次独立重复试验中事件恰好发生k次的概率时 首先要确定好n和k的值 再准确利用公式求概率 2 根据独立重复试验求二项分布的有关问题时 关键是理清事件与事件之间的关系 确定二项分布的试验次数n和变量的概率 求得概率 思维升华 2014 四川改编 一款击鼓小游戏的规则如下 每盘游戏都需击鼓三次 每次击鼓要么出现一次音乐 要么不出现音乐 每盘游戏击鼓三次后 出现一次音乐获得10分 出现两次音乐获得20分 出现三次音乐获得100分 没有出现音乐则扣除200分 即获得 200分 设每次击鼓出现音乐的概率为 且各次击鼓出现音乐相互独立 跟踪训练3 1 设每盘游戏获得的分数为x 求x的概率分布 解x可能的取值为10 20 100 200 根据题意 有 所以x的概率分布为 解析答案 2 玩三盘游戏 至少有一盘出现音乐的概率是多少 解设 第i盘游戏没有出现音乐 为事件ai i 1 2 3 所以 三盘游戏中至少有一盘出现音乐 的概率为 解析答案 返回 易错警示系列 典例 16分 某射手每次射击击中目标的概率是 且各次射击的结果互不影响 1 假设这名射手射击5次 求恰有2次击中目标的概率 2 假设这名射手射击5次 求有3次连续击中目标 另外2次未击中目标的概率 3 假设这名射手射击3次 每次射击 击中目标得1分 未击中目标得0分 在3次射击中 若有2次连续击中 而另外1次未击中 则额外加1分 若3次全击中 则额外加3分 记 为射手射击3次后的总分数 求 的概率分布 易错警示系列 18 独立事件概率求解中的易误点 返回 易错分析 解析答案 温馨提醒 解析答案 温馨提醒 规范解答 在5次射击中 恰有2次击中目标的概率为 2 设 第i次射击击中目标 为事件ai i 1 2 3 4 5 射手在5次射击中 有3次连续击中目标 另外2次未击中目标 为事件a 解析答案 温馨提醒 3 设 第i次射击击中目标 为事件ai i 1 2 3 由题意可知 的所有可能取值为0 1 2 3 6 10分 解析答案 温馨提醒 所以 的概率分布是 16分 温馨提醒 1 正确区分相互独立事件与n次独立重复试验是解决这类问题的关键 独立重复试验是在同一条件下 事件重复发生或不发生 2 独立重复试验中的概率公式p x k 表示的是n次独立重复试验中事件a发生k次的概率 p与1 p的位置不能互换 否则该式子表示的意义就发生了改变 变为事件a有k次不发生的概率了 返回 温馨提醒 思想方法感悟提高 2 相互独立事件与互斥事件的区别相互独立事件是指两个事件发生的概率互不影响 计算式为p ab p a p b 互斥事件是指在同一试验中 两个事件不会同时发生 计算公式为p a b p a p b 方法与技巧 方法与技巧 1 运用公式p ab p a p b 时一定要注意公式成立的条件 只有当事件a b相互独立时 公式才成立 2 独立重复试验中 每一次试验只有两种结果 即某事件要么发生 要么不发生 并且任何一次试验中某事件发生的概率相等 注意 恰好 与 至多 少 的关系 灵活运用对立事件 失误与防范 返回 练出高分 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 已知a b是两个相互独立事件 p a p b 分别表示它们发生的概率 则1 p a p b 是下列哪个事件的概率 事件a b同时发生 事件a b至少有一个发生 事件a b至多有一个发生 事件a b都不发生 解析p a p b 是指a b同时发生的概率 1 p a p b 是a b不同时发生的概率 即事件a b至多有一个发生的概率 解析答案 解析设 甲命中目标 为事件a 乙命中目标 为事件b 丙命中目标 为事件c 则击中目标表示事件a b c中至少有一个发生 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 3 袋子中有大小 质地相同的红球 黑球各一个 现有放回地随机摸取3次 每次摸取一个球 若摸出红球 得2分 摸出黑球 得1分 则3次摸球所得总分至少是4分的概率是 解析所有的基本事件的个数为2 2 2 8 其中总分低于4分的事件只有一个 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 4 设随机变量x服从二项分布x b 5 则函数f x x2 4x x存在零点的概率是 解析 函数f x x2 4x x存在零点 16 4x 0 x 4 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析设事件a 甲实习生加工的零件为一等品 事件b 乙实习生加工的零件为一等品 所以这两个零件中恰有一个一等品的概率为 6 有一批种子的发芽率为0 9 出芽后的幼苗成活率为0 8 在这批种子中 随机抽取一粒 则这粒种子能成长为幼苗的概率为 解析设种子发芽为事件a 种子成长为幼苗为事件b 发芽又成活为幼苗 依题意p b a 0 8 p a 0 9 根据条件概率公式p ab p b a p a 0 8 0 9 0 72 即这粒种子能成长为幼苗的概率为0 72 0 72 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 解析 x b 2 p 又y b 3 p 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 8 一个病人服用某种新药后被治愈的概率为0 9 服用这种新药的有甲 乙 丙3位病人 且各人之间互不影响 有下列结论 3位病人都被治愈的概率为0 93 3人中的甲被治愈的概率为0 9 3人中恰有2人被治愈的概率是2 0 92 0 1 3人中恰好有2人未被治愈的概率是3 0 9 0 12 3人中恰好有2人被治愈 且甲被治愈的概率是0 92 0 1 其中正确结论的序号是 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 9 某人向一目标射击4次 每次击中目标的概率为 该目标分为3个不同的部分 第一 二 三部分面积之比为1 3 6 击中目标时 击中任何一部分的概率与其面积成正比 1 设x表示目标被击中的次数 求x的概率分布 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x的概率分布为 2 若目标被击中2次 a表示事件 第一部分至少被击中1次或第二部分被击中2次 求p a 解设ai表示事件 第一次击中目标时 击中第i部分 i 1 2 bi表示事件 第二次击中目标时 击中第i部分 i 1 2 依题意知p a1 p b1 0 1 p a2 p b2 0 3 所求的概率为 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 10 2014 陕西 在一块耕地上种植一种作物 每季种植成本为1000元 此作物的市场价格和这块地上的产量均具有随机性 且互不影响 其具体情况如下表 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 设x表示在这块地上种植1季此作物的利润 求x的概率分布 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 解设a表示事件 作物产量为300kg b表示事件 作物市场价格为6元 kg 由题设知p a 0 5 p b 0 4 因为利润 产量 市场价格 成本 所以x所有可能的取值为500 10 1000 4000 500 6 1000 2000 300 10 1000 2000 300 6 1000 800 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 1 0 5 0 4 0 5 1 0 4 0 5 p x 800 p a p b 0 5 0 4 0 2 所以x的概率分布为 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2 若在这块地上连续3季种植此作物 求这3季中至少有2季的利润不少于2000元的概率 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 解设ci表示事件 第i季利润不少于2000元 i 1 2 3 由题意知c1 c2 c3相互独立 由 1 知 p ci p x 4000 p x 2000 0 3 0 5 0 8 i 1 2 3 3季的利润均不少于2000元的概率为p c1c2c3 p c1 p c2 p c3 0 83 0 512 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3季中有2季的利润不少于2000元的概率为 所以 这3季中至少有2季的利润不少于2000元的概率为0 512 0 384 0 896 11 设两个独立事件a和b同时不发生的概率是p a发生b不发生与a不发生b发生的概率相同 则事件a发生的概率为 解析根据题意 设事件a发生的概率为a 事件b发生的概率为b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 解析由s7 3知 在前7次摸球中有2次摸取红球 5次摸取白球 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 13 先后掷骰子 骰子的六个面上分别标有1 2 3 4 5 6 两次落在水平桌面后 记正面朝上的点数分别为x y 设事件a为 x y为偶数 事件b为 x y中有偶数 且x y 则概率p b a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 解析答案 14 现有4个人去参加某娱乐活动 该活动有甲 乙两个游戏可供参加者选择 为增加趣味性 约定 每个人
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年教师招聘之《小学教师招聘》题库必刷100题含答案详解(考试直接用)
- 2025年被动式超低能耗建筑技术原理剖析与推广挑战
- 2025年冰雪运动培训基地建设进度控制建议书
- 皮革加工工特殊工艺考核试卷及答案
- 稀土注液收液工入职考核试卷及答案
- 2025年跨境电商保税仓仓储物流成本控制与优化研究报告
- 云南生物竞赛试题及答案解析
- 消费金融公司2025年用户画像研究:精准营销与市场拓展报告
- 南安生物竞赛试题及答案
- 新能源汽车自动驾驶2025年技术演进与电网调度智能化报告
- 2025年部编版道德与法治六年级上册全册教案设计(共4个单元含有教学计划)
- 股东出资协议书合同
- 报考纪检公务员面试题及答案
- 生产考核奖惩管理办法
- 2025年度策划居间合作协议书样本
- DB45∕T 2789-2023 壮医药线点灸治疗护理技术操作规范
- 高分子化学6-离子聚合-阴离子聚合
- 行测5000题电子版2025
- 安全法律法规知识培训
- 小学生钢笔使用课件
- 《冲击地压》课件
评论
0/150
提交评论