A standard conical point drill grinding machine.PDF

滚齿机床身部件结构设计【13张CAD图纸+毕业答辩论文】

收藏

资源目录
跳过导航链接。
压缩包内文档预览:
预览图 预览图 预览图 预览图 预览图 预览图 预览图 预览图
编号:449990    类型:共享资源    大小:2.58MB    格式:RAR    上传时间:2015-07-06 上传人:好资料QQ****51605 IP属地:江苏
45
积分
关 键 词:
机床 部件 结构设计 全套 cad 图纸 毕业 答辩 论文
资源描述:

滚齿机床身部件结构设计

摘要:齿轮加工机床是一种技术含量高且结构复杂的机床。滚齿机又是齿轮加工机床中应用最为广泛的一种,滚齿机主要是用于加工圆柱齿轮和蜗轮的。

滚齿机床身为箱形结构,与底座铸成一个整体,左上部是方形导轨,留安放工作台之用;右上部是用来固定刀架、立柱;床身内部安装差动机构;床身后端连出分齿挂轮架;背面为主传动牙箱;左面底盘为冷却箱;右面底盘为润滑油箱;主电动机和冷却电动机都安装在床身上,方形导轨中间装一丝杆供移动工作台之用,分度挂轮架处的手柄供铣正齿轮或者斜齿轮时操纵使用。

差动机构是用来加工斜齿轮的,分析了差动机构的组成原理,并进行了相应的设计计算,确定了其结构形状与参数。

这次设计是在传统的设计思路上对原有产品的改造,力求满足强度、刚度、经济性、工艺性等方面的要求。


关键词:滚齿机;床身装配结构;差动机构


Abstract: The gear finishing lathe is one kind of technical content high also the structure complex engine bed. The gear-hobbing machine also is a machine equipment which is applies the most widespread, the gear-hobbing machine mainly is uses in processing the cylindrical gears and the worm gear.

The body of gear-hobbing machine is box shape structure, casts a whole with the foundation upside, the left is the square shape of guide rail, remains places using of the work table; Right upside is uses for the immovable support of the column; The interior of the body installs the differential motion organization; Behind the body is main transmission gear-box; Back transmission is tooth box, in left side of it is a cooling tank; the right side of it is lubricating-oil tank; The main motor and the cooling electric motor all are installed on the lathe bed, among the square shape guide rail installs a lead screw to move the work table, divides the swing frame gear place handle for when milling spur gear or the helical gear operates the use.

The differential device is uses for to process the helical gear, analyzed the differential device composition principle, carried on the corresponding design calculation, and determined its structure shape and the parameter.

This design improves product transformation on the basic of traditional design, makes effort to satisfy the request as intensity, rigidity, efficiency, process.


Key words: Gear-hobbing machine; assembling structure of the body; Differential motion mechanism


目    录

1  前   言1

2  总体设计3

2.1滚齿机工作原理3

2.1.1加工直齿轮时机床的运动和传动原理3

2.1.2加工斜齿圆柱齿轮时的运动和传动原理3

2.2拟定选择传动方案4

2.3 主切削力的估算及电动机的选择8

3  机床床身装配结构设计9

3.1 滚齿机床身的特性9

3.2 滚齿机床身的结构分析9

3.3 床身材料的选择10

3.4 床身导轨及机床的润滑11

4  差动机构设计13

4.1 总传动比的计算13

4.2 传动比的分配13

4.3 设计计算14

4.3.1 螺旋伞齿轮的设计14

4.3.2 运动合成机构设计15

4.3.3差动蜗轮设计16

4.3.4圆柱直齿轮的设计20

5 结束语25

参考文献26

致    谢27

附件清单28


1 前   言

齿轮加工机床是一种技术含量高而且机构复杂的机床系统,由于齿轮使用的量大面广,齿轮加工机床已成为机械等行业的关键设备。特别是,随着汽车行业的高速发展,对齿轮的需求量日益增加,对齿轮加工的效率、质量及加工成本的要求愈来愈高,使齿轮加工机床在汽车、摩托车等行业中占有越来越重要的作用。滚齿机是齿轮加工机床中的一种,其占齿轮加工机床拥有量的40%~50%。它主要用来加工圆柱齿轮和蜗轮等。传统滚齿机在加工过程中有以下特点:

a.滚削钢齿轮时,应用切削液可提高刀具寿命,改善加工表面的质量和利于排出切削热而不致引起机床的热变形;

b.机床漏、混油严重;

c.加工成本高;

d.生产效率低下,加工质量差,难以满足现代企业生产的要求。

近几年,我国在滚齿机设计技术方面研究的主要内容经历了从传统机械式滚齿机通过数控改造发展为2-3轴(直线运动轴)实用型数控高效滚齿机,到全新的六轴四联动数控高速滚齿机的开发。滚齿机加工(钢件)全部采用湿式滚齿方式。目前,国内主要滚齿机制造商重庆机床厂及南京二机床有限责任公司生产的系列数控高效滚齿机已采取全密封护罩加油雾分离器和磁力排屑器的方式部分地解决环保问题。世界上滚齿机产量最大的制造商——重庆机床厂从2001 年开始研究面向绿色制造的高速干切滚齿技术,2002年初研制成功既能干切又能湿切的YKS3112六轴四联动数控高速滚齿机,2003年初又开始研制面向绿色制造的YE3116CNC7高速干式切削滚齿机,即将进入商品化阶段。


内容简介:
International Journal of Machine Tools & Manufacture 41 (2001) 915922A standard conical point drill grinding machineM.A. Fugelso*Industrial Engineering Department, The University of Minnesota, 176 Engineering Building, Duluth, MN 55812,USAReceived 13 August 1999; received in revised form 7 July 2000; accepted 13 July 2000AbstractThis paper describes a drill grinding machine that can produce conical twist drill points with very accu-rately specified point shapes. The machine is adjusted by precise orthogonal movements using shims andgages to make sure that the drill parameters are set precisely. The confidence in the point shape producedis high enough that inspection of the points produced is not necessary.Keywords: Drill grinding; Drill sharpening; Cone model drill point; Twist drill grinding1. IntroductionThere are some problems in the adjustment of existing simple conical twist drill grindingmachines. Many of these machines allow the operator to easily vary point parameters that arenot very important as far as drilling performance is concerned, such as point angle, and at thesame time do not allow straightforward adjustment of parameters that have a very powerful effecton performance, such as skew distance, d parameter described by Tsai and Wu 1,2 and wparameter described by Fugelso 3,4. Most machines adjust w in a trial-and-error manner untilan acceptable but uncharacterized drill is produced. This leads to variations in batches of drillpoints produced.After a conical drill point has been produced it is very difficult to measure the point andascertain its model parameters. It is easy to find the sum of q and f because twice that sum isthe easily measured point angle, but separating q and f is difficult. The measured chisel edgeangle contains the w parameter and w cannot easily be separated from the chisel edge angle.While the d parameter cannot be measured directly, Tsai and Wu 1 showed that it can be inferred* Fax: +1-218-726-8596.E-mail address: mfugelso (M.A. Fugelso).nts916 M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922Nomenclatured distance between tip of drill and tip of grinding cone measured parallel to coneaxisD drill diameterHRheight of calibrating rod tip over the baseHSheight of contact point of square calibrating bar and grinding wheel over the baseL a calibration distanceP skew distance adjusting shim thicknessP0thickness of shim P that causes the drill axis to intersect the cone axis AA9Q a parameter adjusting shim thicknessQ0shim thickness required to produce d=0 on a drill of diameter D=0QCthickness of shim Q in place during Q0calibration, any thickness will doR distance from base to top side of gage GR0distance from base to tip of calibrating rodS skew distance between drill axis and grinding cone axisw width of gage block to set w parameterw0width of gage block that lines up with cone axis in side view, Fig. 2W drill web thicknessq grinding cone half anglef angle between drill axis and grinding cone axisw rotation of drill blank about its own axis before grindingfrom the chisel edge angle if the other parameters are known. This confounding of cone modelparameters makes it difficult to inspect points, and it is therefore important to produce the pointscorrectly in the first place.This paper describes a twist drill grinding machine that allows the setting of all of the conedrill point parameters and makes sure that these parameters are well known and repeatable. Thisis because they are set directly from first principles using shims and gage blocks to position thedrill blank precisely. And it can be calibrated with as little knowledge of grinder part dimensionsas possible.2. Description of grinderFig. 1 shows the cone model of a twist drill point with the parameters cone half angle (q),drill axis to cone axis angle (f), skew distance (S) and distance from cone tip to drill tip (d)asdescribed by Tsai and Wu 1.Fig. 2 shows the configuration of the standard conical drill grinder. The axis AA9 is the axisof the cone model. The angle q is set at 30 as this gives a good distribution of relief angle alongthe cutting edge, but not too large a chisel edge angle, see Fugelso 4; a chisel edge angle lessthan 120 sacrifices potential drill performance. The angle f is fixed at 29 to give a standardnts917M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922Fig. 1. Cone model of a twist drill point.Fig. 2. Side view of the standard conical twist drill grinder.point angle of 118 , the point angle being double the sum of f and q. If desired q and f couldbe different, but the above values should be adequate for a wide range of applications.Skew distance has a great effect on drill geometry. A small change in skew distance changesthe relief angles as defined in 5 a great deal. An increase in skew distance results in a uniformnts918 M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922increase in relief angle over the entire length of the cutting edge of the drill. Typically the skewdistance is about equal to the web thickness. The skew distance S can be accurately adjusted byvarying the thickness of shim P, Fig. 3. The value of skew distance is equal to a machine constantP0determined after construction minus the shim thickness P.The d parameter can be adjusted with shim Q, Fig. 3. The shim Q causes displacements atright angles to the displacements caused by shim P, raising and lowering the drill blank. Theshim thickness Q is given by the following equation that is a function of drill diameter D andthe d parameter:Q5Q02D2 sin 45 sin(q+f)2dcos q. (1)The d parameter is a function of the drill diameter because the drill is held in a V groove. Ifthe drill were held in a chuck, d would not be a function of drill diameter. The value of d shouldbe equal to 6090% of the drill diameter, as small as possible without making the chisel edgeangle too large, i.e., greater than 133 . This results in the relief angle increasing as much aspossible along the cutting edge traveling toward the drill axis. Most existing drill grinders do notallow adjustment of this parameter and have a built-in fixed d value that is marginally acceptablefor large drills and much too large for smaller drills.The top side of gage G must be at a distance J from the cone tip to properly align w, Fig. 2.J is given by:J5d1d cos q2 sin(q+f). (2)Then distance R would be:R5R02J. (3)Fig. 3. Isometric view of the standard conical twist drill grinder.nts919M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922Fig. 4. Setting distance R, with drill rotated 90 about cone axis.Fig. 4 shows the distance R from gage G to the base. The gage G must be positioned along theZ axis of the flute stop, Fig. 5, so that it engages the flute of the drill, but this is not a precisionadjustment because of the concave shape of the flute. The w parameter is adjusted by the width(w) of gage G. The drill holder rotates 90 about the cone axis AA9. Then the gage contacts thepoint on the drill where the cutting edge will reach the outside diameter after grinding has takenplace, Figs. 4 and 5. This results in setting w from first principles, w is given by the following equ-ation:Fig. 5. Setting drill point w parameter.nts920 M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 915922w5w02W22D2tan w. (4)The w parameter ranges from zero to a small positive angle, not more than +15 . Increasing wby 1 increases the chisel edge angle by 1 . Increasing w has a beneficial effect on the distributionof relief angle along the cutting edge, see Fugelso 3,4. But doing this increases chisel edgeangle. The chisel edge angle must be less than about 133 or the chisel edge will be too long.Often the w parameter is increased to compensate for a built-in d parameter that is too large, asdemonstrated by Fugelso 3.After touching off the drill flute on the gage G as shown in Fig. 4, the drill is clamped in theV groove drill holder and the drill holder is rotated backward by 90 on the cone axis, encoun-tering the grinding wheel and forming half the point. The drill is then loosened and rotated about180 , and the drill holder is rotated forward 90 . The second flute is touched off on gage G toline up the second half of the point and the drill is reclamped. Then the drill holder is rotatedback again, forming the second half of the point. For clarity the clamps and AA9 axis rotationstops are not shown on the figures.3. CalibrationIt is desirable to calibrate the machine without explicitly knowing the dimensions of the grinderbecause then the calibration is not affected by inaccurately formed or measured parts. While thereis no easy way to get around measuring the angular dimensions, it is possible to calibrate withoutknowing many of the linear dimensions. But, finding P0is very simple and may be found utilizingordinary measuring tools.The calibration of Q0and R0assumes that the grinding wheel can be moved along its axis ofrotation and returned to a previous axial position accurately. R0may be found by replacing therotating part of the grinder with a conical pointed calibrating rod, dashed lines in Fig. 2. R0isthe distance from the base to the tip of the rod when the side of the cone touches the grindingwheel. The height HRfrom the tip of the rod to the base must be recorded to use in the calibrationof Q0. HRonly needs to measured once because it has a constant ratio with R0.Q0may be found by placing a square calibrating bar on the V groove and measuring theheight HSfrom the base to the point of contact of the square bar and the grinding wheel, dashedlines in Fig. 2. Also, the distance L should be measured at this point for future recalibrations. Then:Q05HR2HS1QC. (5)In a grinding machine intended to produce a wide range of drill diameters, the range of shimQ thicknesses required may be inconveniently large. The grinding wheel may be translated to theleft increasing L, Fig. 2. Increasing L from its originally measured value will increase d and threeof the calibration constants according to the following relations:Dd5DL/tan q2DL tan(902q2f) cos q, DR05DL/sin q, DHR5DL/tan q, DHS(6)nts921M.A. Fugelso / International Journal of Machine Tools & Manufacture 41 (2001) 9159225DL tan(902q2f).Eq. (6) also may be used to recalibrate the machine after dressing the side of the grindingwheel. The effect of wheel dressing is to create a small DL.4. AccuracyWhen the V groove drill holder is in the position shown in Fig. 2, there is a very small gapbetween the drill point and the grinding wheel. The gap width is given by:Gap width5S- (W/2)2D. (7)The gap width approaches 0.0 as the skew distance approaches its lower limit of W/2. This gapincreases with increasing skew distance. Neglecting this gap produces a small error in of thesecond term of Eq. (2) of about 1%. This could result in a fraction of a degree error in the wparameter. This is acceptable because w is normally specified in whole degrees, not fractions.5. DiscussionThe drill points created by this standard drill grinder can be compared with drills produced byother grinders in a number of ways. The surface of the drill flank and its edges could be measuredwith a coordinate-measuring machine (CMM) to compare the point produced by a productiongrinder with a standard point. This would tell if the two points were the same. However, it wouldbe good for the comparison if the drill parameters of the point could be extracted from the flanksurface points measured by the CMM. Then the production drill grinder could be adjusted in arational way so that it produces points the same as the standard drill grinder.Another comparison would be to conduct tool life tests of the standard point and the productionpoint, but the problem is that the cutting performance could be quite similar for points that haddifferent shapes. The drills produced by the standard grinder are intended to provide a geometricbenchmark for tests of new drill point shapes.A third comparison would be to check the relief angle of the two drill points at the outerdiameter (OD) and at a point near the end of the chisel edge. These angles are critical to drillperformance. The relief angle near the chisel edge should be larger than at the OD. This approachwould yield good drilling performance but still leave the shape of the production drill incom-pletely specified.6. ConclusionsWhile cam-driven mechanical grinding machines and computer-controlled grinders can producea wide variety of points with programmed changeover from
温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
提示  人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
关于本文
本文标题:滚齿机床身部件结构设计【13张CAD图纸+毕业答辩论文】
链接地址:https://www.renrendoc.com/p-449990.html

官方联系方式

2:不支持迅雷下载,请使用浏览器下载   
3:不支持QQ浏览器下载,请用其他浏览器   
4:下载后的文档和图纸-无水印   
5:文档经过压缩,下载后原文更清晰   
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

网站客服QQ:2881952447     

copyright@ 2020-2025  renrendoc.com 人人文库版权所有   联系电话:400-852-1180

备案号:蜀ICP备2022000484号-2       经营许可证: 川B2-20220663       公网安备川公网安备: 51019002004831号

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知人人文库网,我们立即给予删除!