




文档简介
Computers&OperationsResearch33(2006)15051520/locate/corGeneratingoptimaltwo-sectioncuttingpatternsforrectangularblanksYaodongCui,DongliHe,XiaoxiaSongDepartmentofComputerScience,GuangxiNormalUniversity,Guilin,Guangxi541004,ChinaAbstractThispaperpresentsanalgorithmforgeneratingunconstrainedguillotine-cuttingpatternsforrectangularblanks.Apatternincludesatmosttwosections,eachofwhichconsistsofstripsofthesamelengthanddirection.Thesizesandstripdirectionsofthesectionsmustbedeterminedoptimallytomaximizethevalueoftheblankscut.Thealgorithmusesanimplicitenumerationmethodtoconsiderallpossiblesectionsizes,fromwhichtheoptimalsizesareselected.ItmaysolveallthebenchmarkproblemslistedintheOR-Librarytooptimality.Thecomputationalresultsindicatethatthealgorithmisefcientbothincomputationtimeandinmaterialutilization.Finally,solutionstosomeproblemsaregiven.H170152004ElsevierLtd.Allrightsreserved.Keywords:Guillotine;Optimization;Cuttingstockproblem;Two-dimensionalcutting1. IntroductionTheunconstrainedtwo-dimensionalcuttingproblemistheproblemofcuttingfromasinglerectangularsheetanumberofsmallerrectangularblanks,eachofwhichisofagivensizeandagivenvalue,soastomaximizethevalueoftheblankscut.Thisproblemappearsinthecuttingofsteelsheetsintorequiredsizes,inthecuttingofwoodsheetstomakefurniture,andinseveralotherindustrialareas.Therelatedproblemofminimizingtheamountofwasteproducedbythecuttingcanbeconvertedintothisproblembymakingthevalueofallblanksequaltotheirareas.Correspondingauthor.Fax:+867735812383E-mailaddress:(Y.Cui).0305-0548/$-seefrontmatterH170152004ElsevierLtd.Allrightsreserved.doi:10.1016/j.cor.2004.09.0221506 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Inpracticeitisoftensufcienttoconsideronlyguillotinecuts.Aguillotinecutonarectangleisacutfromoneedgeoftherectangletotheoppositeedgethatisparalleltothetworemainingedges.Werefertotheunconstrainedtwo-dimensionalguillotine-cuttingproblemastheUTDGCP.Young-Gun and Kang 1 pointed out that the UTDGCP should be distinguished from the two-dimensionalguillotine-cuttingstockproblem(TDGCSP).TheTDGCSPistheproblemofcuttingallrequirednumberofsmallrectangularblanksofdifferentsizesfromasetoflargerectangularsheetsatminimumsheetcost.AsolutionoftheTDGCSPconsistsofseveralcuttingpatterns,eachofwhichmaybeconstructedbyanalgorithmfortheUTDGCP.Thelinearprogramming(LP)approachiswidelyusedtosolvetheTDGCSP2.ItsolvestheTDGCSPthroughiteration.AlargenumberofUTDGCPmustbesolvedbeforetheLPapproachndsasolutionclosetooptimal.ThereareseveralexactalgorithmsfortheUTDGCP,suchasthedynamic-programmingproceduresin34,thetree-searchproceduresin57.BecausetheproblemisNPhard,thesealgorithmsarenotadequateforlarge-scaleproblems.TheyarealsonotadequateforconstructingcuttingpatternswhentheLPapproachisusedtosolvetheTDGCSP.Restrictionsonthecuttingpatternsareoftenusedtospeedupthesolutionprocess,suchasthestagedcuttingpatterns3,4.Hi8presentedtwoexactalgorithmsforlarge-scaleunconstrainedtwoandthreestagedcuttingproblems.FayardandZissimopoulos9proposedaheuristicthatselectsanoptimalsubsetof optimal generated strips by solving a sequence of one-dimensional knapsack problems.Althoughrestrictionsmaydecreasethevalueofthecuttingpatterns,theymaycutdownthecomputationtimedrastically.Thispaperputsforwardanewrestrictiononthecuttingpatterns.Itsuggeststheapplicationoftwo-sectionpatterns.Atwo-sectionpatterncontainsatmosttwosections.Allstripsinasectionareofthesamelengthanddirection.Astripiseitherauniformstripthatincludesonlyblanksofthesamesize,orageneralstripconsistingofblanksofdifferentsizes.Anexactalgorithm(referredtoastheTSECalgorithm)forgeneratingoptimaltwo-sectionpatternsisconstructed.Itconsidersallpossiblesectionsizesimplicitlyandndstheoptimalsizesthroughcomparisons.Tocomparethealgorithmwiththealgorithmsfornon-stagedandstagedcuttingpatterns,computationswereperformedonbothbenchmarkproblemsandrandomproblems.TheresultsindicatethattheTSECalgorithmisefcientbothincomputationtimeandinmaterialutilization,andmaysimplifythecuttingprocess.ItshouldbenotedthatthealgorithmpresentedmightbealsoseenasanimprovedversionofthatofFayardandZissimopoulos9.Theiralgorithmusesaseriesofone-dimensionalknapsackproblemsforgeneratingasetofoptimalstripsandthenllstheminthesheetinanoptimalway.Althoughnotdenitelypointedout,theiralgorithmgeneratesonlytwo-sectionpatterns.2. Two-sectionpatterns2.1. NotationandfunctionsTable1listssomenotationandfunctionstobeused.Mostofthemwillbere-introducedwheretheyareusedforthersttime.Thereadermaynditismoreconvenienttolookforthenotationdenitioninthetablethaninthetext.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1507Table1NotationandfunctionsL,W Lengthandwidthofthestocksheetli,wi,ciLength,widthandvalueoftheithrectangularblank,i =1,2,.,mFX(x) ValueofX-sectionx W inanX-patternFY(x) ValueofY-sectionx W inanX-patternfX(y) ValueofX-sectionL y inaY-patternfY(y) ValueofY-sectionL y inaY-pattern|L| NumberofXbreakpointsbetween0andL|W| NumberofYbreakpointsbetween0andWBXThesetofXbreakpoints, BX=bx,1,bx,2,.,bx,|L|BYThesetofYbreakpoints, BY=by,1,by,2,.,by,|W|u(i,x) ValueofanX-stripx wi,0lessorequalslantxlessorequalslantL,i =1,2,.,mv(i,y) ValueofaY-stripy li,0lessorequalslantylessorequalslantW,i =1,2,.,mint(x) ReturnthemaximumintegernotlargerthanxFig.1.Strips:(a)anX-strip,(b)aY-strip.2.2. StripsAssumethatthedirectionoftheblanksisxed.Thisrestrictionisnotserious,sinceifablankl wcanbecutwitheitherdirection,itmaybetreatedastwodifferentblanksl wandw l,eachofwhichhasaxeddirection.Bothgeneralanduniformstripswillbeconsideredingeneratingtwo-sectionpatterns.Auniformstripcontainsonlyblanksofthesamesizeanddirection.AsshowninFig.1,astripmaybeeitherinXorYdirection.AstripisanX-stripifitisinXdirection;otherwiseitisaY-strip.BlanksinX-stripsareleftjustied,andthoseinY-stripsarebottomjustied.ThestriplengthofanX-stripismeasuredhorizontally,andthestriplengthofaY-stripismeasuredvertically.Onlystripsofwidthequaltoablankwidth(horizontalstrips)orlength(verticalstrips)willbeconsid-ered.Assumethattherearemblanks.Theithblankisofsizeliwi,withliandwibeingpositiveintegers,i =1,2,.,m.ThentheithX-stripisofwidthwi,andtheithY-stripisofwidthli,i =1,2,.,m.1508 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.2.Sections:(a)anX-section,(b)aY-section.Fig.3.X-patterns.Fig.4.Y-patterns.2.3. SectionsStripsinasectionareofthesamedirectionandlength.Thedirectionofthestripsisreferredtoasthesectiondirection.AsectionisanX-sectionifthestripsareinXdirection,otherwiseitisaY-section.Fig.2ashowsanX-sectionandFig.2bshowsaY-section.2.4. Two-sectionpatternsFigs.3and4showallpossiblepatternsthatshouldbeconsidered.Thearrowineachsectionindicatesthedirectionofthesection.Thetwosectionsmaybejustiedeithervertically(Y-pattern)orhorizontally(X-pattern).ThepatternsofFigs.3aand4aareone-sectionpatterns,whicharethespecialcasesoftwo-sectionpatterns.ThepatternofFig.3amaybeseenasatwo-sectionpatterncontainingtwoY-sections,andthepatternofFig.4amaybetakenasatwo-sectionpatternconsistingoftwoX-sections.AssumethatthesheetsizeisLW.ThewidthofanX-sectioninanX-patternisW(Fig.3b),andthelengthofaY-sectioninaY-patternisL(Fig.4b).Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15092.5. Break-pointsManyauthors49haveusednormalsetstodevelopalgorithmsforguillotine-cuttingpatterns.Theelementsofthenormalsetsarereferredtoasbreakpointsinthispaper.Theyaredenedas:X breakpoints: x =msummationdisplayi=1zililessorequalslantL, zigreaterorequalslant0 andinteger,Y breakpoints: y =msummationdisplayi=1ziwilessorequalslantW, zigreaterorequalslant0 andinteger. (1)DenotethesetofallXbreakpointsby BX, BX=bx,1,bx,2,.,bx,|L|,where |L| isthenumberofXbreakpointsbetween0andL,bx,i|L|.Step3. Letx = bx,i,V = FX(x) +maxFX(L x),FY(L x).Gotostep2ifV|W|.Step3. Letx = by,i,V = fY(y) +maxfY(W y),fX(W y).Gotostep2ifV10800U4 48350130 48350130 48350130 0.04 1.66 32.56W1 167751 168289 162279 167751 0.02 0.18 8.91 8280.80W2 37617 37621 37621 37621 0.01 0.03 4.59 1427.35W3 253617 253617 250830 253617 0.06 0.36 23.08 10800W4 378366 378366 377910 0.14 0.71 57.29TheH_3STGcouldnotverifytheoptimalityofproblemsU3andW3becausethatthecomputationtimeforeachproblemwasnotallowedtoexceed3h.ItalsocouldnotsolveproblemsU4andW4forthelargescaleoftheproblemsizes.Theseeightproblemsarealllarge-scaleproblems.Thesheetsizeofthemis45005000,50504070,73506579,73506579,50005000,34272769,75007381,and75007381,respectively.Thenumbersofblanksizesare10,10,20,40,20,20,40,and80respectively.AsmentionedinSection3.6,theTSECalgorithmsactuallygeneratetwoandthree-stagepatterns.v4shouldnotbesmallerthanv2foranyproblem,forthatitisthevalueoftheoptimalthree-stagedpattern.FromTable6weknowthatv4v2forproblemsU1,U2andW1.Therefore,wecanconcludethattheauthormadesomeerrorsinpresentingthecomputationalresultsin8.Tosupportthisconclusion,thetwo-sectionpatternsofthesethreeproblemsaregiveninFigs.68,andtheblankdataincludedareasfollows(forproblemsU1andU2:blankidnumberoftheblanklengthwidth;forproblemW1:blankidnumberoftheblanklengthwidthvalue):U1: 194371490,320237932,1020659921,U2: 3129321107,42598732,575691321,721248747,W1: 1754377312223,915985621564.4.4. ComparisonbetweentheTSECandtheFZalgorithmsBoth the TSEC and the FZ 9 algorithms will generate optimal two-section patterns. The TSECmaybeseenasanimprovedversionoftheFZ.ThethreetechniquesmentionedinSection3.4arenotused by the FZ.We used test problems of Group 8 to test the TSEC and FZ algorithms. The sheetsize is 8000 6000. The blank data are the same as Group 6. The average material utilization is99.98%, which is the same for the two algorithms, because both of them can generate optimal two-section patterns.The average computation time for one problem is 16.23s for the FZ, 1.98s for theTSEC_G. The average number of knapsack problems solved for one problem is 22,787 for the FZ,9542 for the TSEC_G. The average number of strips considered in solving a knapsack problem re-latedtoasectionis30fortheFZ,1.75fortheTSEC_G.WhentheTSEC_Uisapplied,theaveragecomputation time is 0.15s. The average material utilization is 99.97%, which is nearly the same asthat of the TSEC_Gor FZ. Both the TSEC_Gand the TSEC_U are much more time efcient thantheFZ.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1517Fig.6.ThepatternofproblemU1.Fig.7.ThepatternofproblemU2.BelowwegivethesolutionstotheproblemsinGroup9,whichmaybeusedbyfutureresearchersorpractitionerstotesttheiralgorithms.Thisgroupincludes12problems.Thesheetsizeis80006000.TherstsixproblemsarethoselistedinTable4.ProblemsP7P12areformedbycombiningtheblank1518 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.8.ThepatternofproblemW1.Table7ThecomputationalresultsofGroup9ID m v1v2v3t1t2t3P1 30 47993491 47993491 47992398 21.17 2.01 0.16P2 30 47991116 47991116 47991116 17.49 2.07 0.15P3 30 47987624 47987624 47983659 14.56 1.80 0.16P4 30 47993588 47993588 47993588 18.15 2.00 0.15P5 30 48000000 48000000 48000000 13.87 2.16 0.16P6 30 47997600 47997600 47997600 19.37 2.13 0.16P7 60 48000000 48000000 48000000 38.41 5.91 0.36P8 60 47998064 47998064 47998064 36.94 6.08 0.37P9 60 48000000 48000000 48000000 39.72 6.06 0.35P10 90 48000000 48000000 48000000 50.79 10.52 0.56P11 90 48000000 48000000 48000000 56.15 10.50 0.54P12 180 48000000 48000000 48000000 71.34 19.02 1.10dataoftwoormoreproblemsfromtherstsix.Namely,ProblemID P7 P8 P9 P10 P11 P12Blankdata P1+P2 P3+P4 P5+P6 P1+P2+P3 P4+P5+P6 P1+P2+P3+P4+P5+P6ThecomputationalresultsaresummarizedinTable7,wherev1andt1arethevalueandcomputationtimeoftheFZ,v2andt2arethoseoftheTSEC_G,v3andt3arethoseoftheTSEC_U.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15195. ConclusionsTheTSECmaygenerateoptimaltwo-sectionpatterns,whichareeithertwo-stageorthree-stagepat-terns. For the small-scale problems tested, the TSEC can solve most of them to optimality, and thesolutionsarenotinferiortothoseoftheoptimalthree-stagepatterns.Formedium-scaleproblems,theTSECcangivesolutionsveryclosetooptimal.FortheproblemsofGroup6,theaveragematerialutilizationisveryclosetooptimal(99.64%vs.99.74%),superiortothatoftheoptimaltwo-stagepatterns(99.64%vs.99.44%),andveryclosetothatoftheoptimalthree-stagepatterns(99.64%vs.99.66%).TheaveragecomputationtimeismuchmoreshorterthanthoseoftheB_OPTandB_3STG.Fortheeightlarge-scaleproblemstested(Group7),theTSECgivessolutionsnotinferiortothoseoftheH_3STG.AlthoughtheTSECwasexecutedonacomputerwithaclockrate19timesofthatusedbyHiff8(1.9GHzvs.0.1GHz),wemaystillinferthatitismoretimeefcientthantheH_3STGfromthehugedifferenceincomputationtimeshowninTable6.ApplyingthethreetechniquesdiscussedinSection3.4makestheTSECmuchmoretimeefcientthan the FZ. These techniques can also be used to improve the H_3STG. We have actually devel-oped an algorithm based on these techniques, which is able to generate optimal three-stage patternsefciently.AcknowledgementsGuangxiScienceFoundationsupportsthisprogramunderthegrantNo.0236017.Theauthorswishtoexpresstheirappreciationtothesupporter.Theauthorsarealsogratefultotheanonymousrefereewhosecommentshelpedtoimproveanearlyversionofthispaper.References1 Young-GunG,KangM-K.Anewupperboundforunconstrainedtwo-dimensionalcuttingandpacking.JournaloftheOperationalResear
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车位定金协议书范本
- 实验设备租赁合同
- 透明彩钢瓦采购合同协议
- 软包定制工程合同协议
- 连锁酒店经营合同协议
- 买方土地居间合同协议合同书
- 法律知识产权法试题集
- 路基路面检测合同协议
- 道具修缮费合同协议
- 邯郸拆迁协议书范本
- 广东省深圳市南山区2024年八年级下学期语文期末语文试卷附答案
- 国家开放大学-法学专业-2023年秋季《法律文化》形成性考核作业答案
- VR全景图片拍摄与漫游 习题及答案 尹敬齐
- 《纺织材料生产》课件-项目6:纺丝工段
- TB 10012-2019 铁路工程地质勘察规范
- 车辆维修保养服务 投标方案(技术方案)
- 2023-2024学年人教版八年级下册数学期中复习试卷
- 护理交接班不全课件
- 2023年-2024年职业卫生检测考试题库及答案
- 护患关系和沟通课件
- 水利工程建设标准强制性条文实施计划
评论
0/150
提交评论