文档简介
Computers&OperationsResearch33(2006)15051520/locate/corGeneratingoptimaltwo-sectioncuttingpatternsforrectangularblanksYaodongCui,DongliHe,XiaoxiaSongDepartmentofComputerScience,GuangxiNormalUniversity,Guilin,Guangxi541004,ChinaAbstractThispaperpresentsanalgorithmforgeneratingunconstrainedguillotine-cuttingpatternsforrectangularblanks.Apatternincludesatmosttwosections,eachofwhichconsistsofstripsofthesamelengthanddirection.Thesizesandstripdirectionsofthesectionsmustbedeterminedoptimallytomaximizethevalueoftheblankscut.Thealgorithmusesanimplicitenumerationmethodtoconsiderallpossiblesectionsizes,fromwhichtheoptimalsizesareselected.ItmaysolveallthebenchmarkproblemslistedintheOR-Librarytooptimality.Thecomputationalresultsindicatethatthealgorithmisefcientbothincomputationtimeandinmaterialutilization.Finally,solutionstosomeproblemsaregiven.H170152004ElsevierLtd.Allrightsreserved.Keywords:Guillotine;Optimization;Cuttingstockproblem;Two-dimensionalcutting1. IntroductionTheunconstrainedtwo-dimensionalcuttingproblemistheproblemofcuttingfromasinglerectangularsheetanumberofsmallerrectangularblanks,eachofwhichisofagivensizeandagivenvalue,soastomaximizethevalueoftheblankscut.Thisproblemappearsinthecuttingofsteelsheetsintorequiredsizes,inthecuttingofwoodsheetstomakefurniture,andinseveralotherindustrialareas.Therelatedproblemofminimizingtheamountofwasteproducedbythecuttingcanbeconvertedintothisproblembymakingthevalueofallblanksequaltotheirareas.Correspondingauthor.Fax:+867735812383E-mailaddress:(Y.Cui).0305-0548/$-seefrontmatterH170152004ElsevierLtd.Allrightsreserved.doi:10.1016/j.cor.2004.09.0221506 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Inpracticeitisoftensufcienttoconsideronlyguillotinecuts.Aguillotinecutonarectangleisacutfromoneedgeoftherectangletotheoppositeedgethatisparalleltothetworemainingedges.Werefertotheunconstrainedtwo-dimensionalguillotine-cuttingproblemastheUTDGCP.Young-Gun and Kang 1 pointed out that the UTDGCP should be distinguished from the two-dimensionalguillotine-cuttingstockproblem(TDGCSP).TheTDGCSPistheproblemofcuttingallrequirednumberofsmallrectangularblanksofdifferentsizesfromasetoflargerectangularsheetsatminimumsheetcost.AsolutionoftheTDGCSPconsistsofseveralcuttingpatterns,eachofwhichmaybeconstructedbyanalgorithmfortheUTDGCP.Thelinearprogramming(LP)approachiswidelyusedtosolvetheTDGCSP2.ItsolvestheTDGCSPthroughiteration.AlargenumberofUTDGCPmustbesolvedbeforetheLPapproachndsasolutionclosetooptimal.ThereareseveralexactalgorithmsfortheUTDGCP,suchasthedynamic-programmingproceduresin34,thetree-searchproceduresin57.BecausetheproblemisNPhard,thesealgorithmsarenotadequateforlarge-scaleproblems.TheyarealsonotadequateforconstructingcuttingpatternswhentheLPapproachisusedtosolvetheTDGCSP.Restrictionsonthecuttingpatternsareoftenusedtospeedupthesolutionprocess,suchasthestagedcuttingpatterns3,4.Hi8presentedtwoexactalgorithmsforlarge-scaleunconstrainedtwoandthreestagedcuttingproblems.FayardandZissimopoulos9proposedaheuristicthatselectsanoptimalsubsetof optimal generated strips by solving a sequence of one-dimensional knapsack problems.Althoughrestrictionsmaydecreasethevalueofthecuttingpatterns,theymaycutdownthecomputationtimedrastically.Thispaperputsforwardanewrestrictiononthecuttingpatterns.Itsuggeststheapplicationoftwo-sectionpatterns.Atwo-sectionpatterncontainsatmosttwosections.Allstripsinasectionareofthesamelengthanddirection.Astripiseitherauniformstripthatincludesonlyblanksofthesamesize,orageneralstripconsistingofblanksofdifferentsizes.Anexactalgorithm(referredtoastheTSECalgorithm)forgeneratingoptimaltwo-sectionpatternsisconstructed.Itconsidersallpossiblesectionsizesimplicitlyandndstheoptimalsizesthroughcomparisons.Tocomparethealgorithmwiththealgorithmsfornon-stagedandstagedcuttingpatterns,computationswereperformedonbothbenchmarkproblemsandrandomproblems.TheresultsindicatethattheTSECalgorithmisefcientbothincomputationtimeandinmaterialutilization,andmaysimplifythecuttingprocess.ItshouldbenotedthatthealgorithmpresentedmightbealsoseenasanimprovedversionofthatofFayardandZissimopoulos9.Theiralgorithmusesaseriesofone-dimensionalknapsackproblemsforgeneratingasetofoptimalstripsandthenllstheminthesheetinanoptimalway.Althoughnotdenitelypointedout,theiralgorithmgeneratesonlytwo-sectionpatterns.2. Two-sectionpatterns2.1. NotationandfunctionsTable1listssomenotationandfunctionstobeused.Mostofthemwillbere-introducedwheretheyareusedforthersttime.Thereadermaynditismoreconvenienttolookforthenotationdenitioninthetablethaninthetext.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1507Table1NotationandfunctionsL,W Lengthandwidthofthestocksheetli,wi,ciLength,widthandvalueoftheithrectangularblank,i =1,2,.,mFX(x) ValueofX-sectionx W inanX-patternFY(x) ValueofY-sectionx W inanX-patternfX(y) ValueofX-sectionL y inaY-patternfY(y) ValueofY-sectionL y inaY-pattern|L| NumberofXbreakpointsbetween0andL|W| NumberofYbreakpointsbetween0andWBXThesetofXbreakpoints, BX=bx,1,bx,2,.,bx,|L|BYThesetofYbreakpoints, BY=by,1,by,2,.,by,|W|u(i,x) ValueofanX-stripx wi,0lessorequalslantxlessorequalslantL,i =1,2,.,mv(i,y) ValueofaY-stripy li,0lessorequalslantylessorequalslantW,i =1,2,.,mint(x) ReturnthemaximumintegernotlargerthanxFig.1.Strips:(a)anX-strip,(b)aY-strip.2.2. StripsAssumethatthedirectionoftheblanksisxed.Thisrestrictionisnotserious,sinceifablankl wcanbecutwitheitherdirection,itmaybetreatedastwodifferentblanksl wandw l,eachofwhichhasaxeddirection.Bothgeneralanduniformstripswillbeconsideredingeneratingtwo-sectionpatterns.Auniformstripcontainsonlyblanksofthesamesizeanddirection.AsshowninFig.1,astripmaybeeitherinXorYdirection.AstripisanX-stripifitisinXdirection;otherwiseitisaY-strip.BlanksinX-stripsareleftjustied,andthoseinY-stripsarebottomjustied.ThestriplengthofanX-stripismeasuredhorizontally,andthestriplengthofaY-stripismeasuredvertically.Onlystripsofwidthequaltoablankwidth(horizontalstrips)orlength(verticalstrips)willbeconsid-ered.Assumethattherearemblanks.Theithblankisofsizeliwi,withliandwibeingpositiveintegers,i =1,2,.,m.ThentheithX-stripisofwidthwi,andtheithY-stripisofwidthli,i =1,2,.,m.1508 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.2.Sections:(a)anX-section,(b)aY-section.Fig.3.X-patterns.Fig.4.Y-patterns.2.3. SectionsStripsinasectionareofthesamedirectionandlength.Thedirectionofthestripsisreferredtoasthesectiondirection.AsectionisanX-sectionifthestripsareinXdirection,otherwiseitisaY-section.Fig.2ashowsanX-sectionandFig.2bshowsaY-section.2.4. Two-sectionpatternsFigs.3and4showallpossiblepatternsthatshouldbeconsidered.Thearrowineachsectionindicatesthedirectionofthesection.Thetwosectionsmaybejustiedeithervertically(Y-pattern)orhorizontally(X-pattern).ThepatternsofFigs.3aand4aareone-sectionpatterns,whicharethespecialcasesoftwo-sectionpatterns.ThepatternofFig.3amaybeseenasatwo-sectionpatterncontainingtwoY-sections,andthepatternofFig.4amaybetakenasatwo-sectionpatternconsistingoftwoX-sections.AssumethatthesheetsizeisLW.ThewidthofanX-sectioninanX-patternisW(Fig.3b),andthelengthofaY-sectioninaY-patternisL(Fig.4b).Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15092.5. Break-pointsManyauthors49haveusednormalsetstodevelopalgorithmsforguillotine-cuttingpatterns.Theelementsofthenormalsetsarereferredtoasbreakpointsinthispaper.Theyaredenedas:X breakpoints: x =msummationdisplayi=1zililessorequalslantL, zigreaterorequalslant0 andinteger,Y breakpoints: y =msummationdisplayi=1ziwilessorequalslantW, zigreaterorequalslant0 andinteger. (1)DenotethesetofallXbreakpointsby BX, BX=bx,1,bx,2,.,bx,|L|,where |L| isthenumberofXbreakpointsbetween0andL,bx,i|L|.Step3. Letx = bx,i,V = FX(x) +maxFX(L x),FY(L x).Gotostep2ifV|W|.Step3. Letx = by,i,V = fY(y) +maxfY(W y),fX(W y).Gotostep2ifV10800U4 48350130 48350130 48350130 0.04 1.66 32.56W1 167751 168289 162279 167751 0.02 0.18 8.91 8280.80W2 37617 37621 37621 37621 0.01 0.03 4.59 1427.35W3 253617 253617 250830 253617 0.06 0.36 23.08 10800W4 378366 378366 377910 0.14 0.71 57.29TheH_3STGcouldnotverifytheoptimalityofproblemsU3andW3becausethatthecomputationtimeforeachproblemwasnotallowedtoexceed3h.ItalsocouldnotsolveproblemsU4andW4forthelargescaleoftheproblemsizes.Theseeightproblemsarealllarge-scaleproblems.Thesheetsizeofthemis45005000,50504070,73506579,73506579,50005000,34272769,75007381,and75007381,respectively.Thenumbersofblanksizesare10,10,20,40,20,20,40,and80respectively.AsmentionedinSection3.6,theTSECalgorithmsactuallygeneratetwoandthree-stagepatterns.v4shouldnotbesmallerthanv2foranyproblem,forthatitisthevalueoftheoptimalthree-stagedpattern.FromTable6weknowthatv4v2forproblemsU1,U2andW1.Therefore,wecanconcludethattheauthormadesomeerrorsinpresentingthecomputationalresultsin8.Tosupportthisconclusion,thetwo-sectionpatternsofthesethreeproblemsaregiveninFigs.68,andtheblankdataincludedareasfollows(forproblemsU1andU2:blankidnumberoftheblanklengthwidth;forproblemW1:blankidnumberoftheblanklengthwidthvalue):U1: 194371490,320237932,1020659921,U2: 3129321107,42598732,575691321,721248747,W1: 1754377312223,915985621564.4.4. ComparisonbetweentheTSECandtheFZalgorithmsBoth the TSEC and the FZ 9 algorithms will generate optimal two-section patterns. The TSECmaybeseenasanimprovedversionoftheFZ.ThethreetechniquesmentionedinSection3.4arenotused by the FZ.We used test problems of Group 8 to test the TSEC and FZ algorithms. The sheetsize is 8000 6000. The blank data are the same as Group 6. The average material utilization is99.98%, which is the same for the two algorithms, because both of them can generate optimal two-section patterns.The average computation time for one problem is 16.23s for the FZ, 1.98s for theTSEC_G. The average number of knapsack problems solved for one problem is 22,787 for the FZ,9542 for the TSEC_G. The average number of strips considered in solving a knapsack problem re-latedtoasectionis30fortheFZ,1.75fortheTSEC_G.WhentheTSEC_Uisapplied,theaveragecomputation time is 0.15s. The average material utilization is 99.97%, which is nearly the same asthat of the TSEC_Gor FZ. Both the TSEC_Gand the TSEC_U are much more time efcient thantheFZ.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 1517Fig.6.ThepatternofproblemU1.Fig.7.ThepatternofproblemU2.BelowwegivethesolutionstotheproblemsinGroup9,whichmaybeusedbyfutureresearchersorpractitionerstotesttheiralgorithms.Thisgroupincludes12problems.Thesheetsizeis80006000.TherstsixproblemsarethoselistedinTable4.ProblemsP7P12areformedbycombiningtheblank1518 Y.Cuietal./Computers&OperationsResearch33(2006)15051520Fig.8.ThepatternofproblemW1.Table7ThecomputationalresultsofGroup9ID m v1v2v3t1t2t3P1 30 47993491 47993491 47992398 21.17 2.01 0.16P2 30 47991116 47991116 47991116 17.49 2.07 0.15P3 30 47987624 47987624 47983659 14.56 1.80 0.16P4 30 47993588 47993588 47993588 18.15 2.00 0.15P5 30 48000000 48000000 48000000 13.87 2.16 0.16P6 30 47997600 47997600 47997600 19.37 2.13 0.16P7 60 48000000 48000000 48000000 38.41 5.91 0.36P8 60 47998064 47998064 47998064 36.94 6.08 0.37P9 60 48000000 48000000 48000000 39.72 6.06 0.35P10 90 48000000 48000000 48000000 50.79 10.52 0.56P11 90 48000000 48000000 48000000 56.15 10.50 0.54P12 180 48000000 48000000 48000000 71.34 19.02 1.10dataoftwoormoreproblemsfromtherstsix.Namely,ProblemID P7 P8 P9 P10 P11 P12Blankdata P1+P2 P3+P4 P5+P6 P1+P2+P3 P4+P5+P6 P1+P2+P3+P4+P5+P6ThecomputationalresultsaresummarizedinTable7,wherev1andt1arethevalueandcomputationtimeoftheFZ,v2andt2arethoseoftheTSEC_G,v3andt3arethoseoftheTSEC_U.Y.Cuietal./Computers&OperationsResearch33(2006)15051520 15195. ConclusionsTheTSECmaygenerateoptimaltwo-sectionpatterns,whichareeithertwo-stageorthree-stagepat-terns. For the small-scale problems tested, the TSEC can solve most of them to optimality, and thesolutionsarenotinferiortothoseoftheoptimalthree-stagepatterns.Formedium-scaleproblems,theTSECcangivesolutionsveryclosetooptimal.FortheproblemsofGroup6,theaveragematerialutilizationisveryclosetooptimal(99.64%vs.99.74%),superiortothatoftheoptimaltwo-stagepatterns(99.64%vs.99.44%),andveryclosetothatoftheoptimalthree-stagepatterns(99.64%vs.99.66%).TheaveragecomputationtimeismuchmoreshorterthanthoseoftheB_OPTandB_3STG.Fortheeightlarge-scaleproblemstested(Group7),theTSECgivessolutionsnotinferiortothoseoftheH_3STG.AlthoughtheTSECwasexecutedonacomputerwithaclockrate19timesofthatusedbyHiff8(1.9GHzvs.0.1GHz),wemaystillinferthatitismoretimeefcientthantheH_3STGfromthehugedifferenceincomputationtimeshowninTable6.ApplyingthethreetechniquesdiscussedinSection3.4makestheTSECmuchmoretimeefcientthan the FZ. These techniques can also be used to improve the H_3STG. We have actually devel-oped an algorithm based on these techniques, which is able to generate optimal three-stage patternsefciently.AcknowledgementsGuangxiScienceFoundationsupportsthisprogramunderthegrantNo.0236017.Theauthorswishtoexpresstheirappreciationtothesupporter.Theauthorsarealsogratefultotheanonymousrefereewhosecommentshelpedtoimproveanearlyversionofthispaper.References1 Young-GunG,KangM-K.Anewupperboundforunconstrainedtwo-dimensionalcuttingandpacking.JournaloftheOperationalResear
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026天津市中心妇产科医院招聘38人笔试考试备考题库及答案解析
- 2025福建福州市建设发展集团有限公司权属企业(筑地公司)社会招聘1人考试笔试参考题库附答案解析
- 电阻器制造工安全知识水平考核试卷含答案
- 2025中国信达宁夏分公司招聘笔试考试备考试题及答案解析
- 工业供气工岗前工作技能考核试卷含答案
- 固体饮料喷雾造粒工操作规范模拟考核试卷含答案
- 大型藻类栽培工岗前实操效果考核试卷含答案
- 2025山东聊城阳谷县卫生健康系统事业单位青年人才引进21人笔试考试备考试题及答案解析
- 剑麻制品工岗前规程考核试卷含答案
- 2025年西安市儿童医院招聘(2人)笔试考试备考题库及答案解析
- 《高分子溶液 》课件
- DL/T 5622-2021 太阳能热发电厂储热系统设计规范
- 《虚拟现实(VR)制作与应用》考试复习题库(汇总)
- 动力学中的临界问题课件
- 山东金岭矿业股份有限公司侯家庄矿区矿山地质环境保护与土地复垦方案
- 最全地理顺口溜(初高中均适用)
- 高考3500词无中文无音标清晰版自测
- GB/T 2423.1-2008电工电子产品环境试验第2部分:试验方法试验A:低温
- GB/T 18788-2008平板式扫描仪通用规范
- GB 16668-2010干粉灭火系统及部件通用技术条件
- GA 1517-2018金银珠宝营业场所安全防范要求
评论
0/150
提交评论