安顺一中2016届高三(上)数学第一至三周(补课期间)集体备课.doc_第1页
安顺一中2016届高三(上)数学第一至三周(补课期间)集体备课.doc_第2页
安顺一中2016届高三(上)数学第一至三周(补课期间)集体备课.doc_第3页
安顺一中2016届高三(上)数学第一至三周(补课期间)集体备课.doc_第4页
安顺一中2016届高三(上)数学第一至三周(补课期间)集体备课.doc_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安顺一中2016届高三(上)数学第一至三周(补课期间)集体备课中心发言人:石豪方、余红 2015.08.0308.21一、集合1集合的含义与表示(1)通过实例,了解集合的含义,体会元素与集合的“属于”关系;(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;2集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集;(2)在具体情境中,了解全集与空集的含义;3集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用图表达集合的关系及运算,体会直观图示对理解抽象概念的作用【知识网络】集合与简易逻辑集合简易逻辑基本概念、分类与表示关系运算元素与集合关系集合与集合关系逻辑联结词简单命题与复合命题命题的四种形式及其关系充要条件交集并集补集第一节 集合的概念与相互关系自主学习1集合的含义与表示(1)一般地,把一些指定的对象组成的总体叫做集合,集合中的对象称元素,若a是集合A的元素,记作;若b不是集合的元素,记作;(2)集合中的元素必须满足:确定性、互异性与无序性三大特性;(3)常用的集合表示法:列举法、描述法或图示法(图);(4)常用数集及其记法:非负整数集(或自然数集),记作;正整数集,记作或;整数集,记作;有理数集,记作;实数集,记作2集合间的关系:(1)集合的任何一个元素都是集合的元素,则称是的子集(或B包含),记作(2)集合相等:构成两个集合的元素完全一样,若且,则称等于,记作(3)若且,则称是的真子集,或者若,但存在元素且,则称是的真子集,记作(4)不含任何元素的集合称为空集,记作规定:空集是任何集合的子集(5)简单性质:1);2);3)若,则教材透析1集合中的元素必须具有:确定性、互异性与无序性。确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立;互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素;无序性:集合中不同的元素之间没有地位差异,集合中元素的排列不是固定的;2集合有三种表示方法列举法:把集合中的元素一一列举出来,写在大括号内;描述法:把集合中的元素的公共属性描述出来,写在大括号内具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征注意:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法3若集合是个元素的集合,则集合有个子集(其中个真子集,个非空真子集)典例剖析【题型1】 集合元素的基本特征【例1】已知集合,试求集合的所有子集.【解析】由题意可知是的正约数,所以 可以是;相应的为,即 .的所有子集为【点评】 本题主要考查集合的基础知识,集合中的元素具有确定性、互异性与无序性三大特性,尤其是互异性在解题中应予以足够重视.【变式与拓展】1.已知集合,,求的值【解析】由可知,(1),或(2)解(1)得, 解(2)得,又因为当时,与题意不符,所以,.【题型2】集合的表示法【例2】已知集合且,求参数的取值范围【解析】由已知易求得当时,由知无解;当时,显然无解;当时, ,由解得综上知,参数的取值范围是.【点评】本题中,集合的定义是一个二次三项式,那么寻于集合B要分类讨论使其取值范围数字化,才能通过条件求出参数的取值范围.【变式与拓展】2. (2009广东文)已知全集,则正确表示集合和关系的韦恩()图是 【解析】由,得,则,选B题型3 集合间的基本关系【例3】已知,集合.若,则的值是( )A.5 B.4 C.25 D.10【解析】,且及集合中元素的互异性知,即,此时应有而,从而在集合B中, 由,得由(2)(3)解得,代入(1)式知,也满足(1)式,【点评】本题主要考查集合相等的的概念,如果两个集合中的元素个数相等,那么两个集合中对应的元素应分别相等才能保证两个集合相等.而找到这种对应关系往往是解决此类题目的关键.设集合,则满足的集合B的个数是( )。A1 B3 C4 D8【解析】,则集合B中必含有元素3,即此题可转化为求集合的子集个数问题,所以满足题目条件的集合B共有个故选择答案C【点评】 集合A是n个元素的集合,则集合A有2n个子集、2n1个真子集、2n2个非空真子集【变式与拓展】3.(2009山东理)集合,,若,则的值为( )A.0 B.1 C.2 D.4【解析】:,故选D.答案:D题型4 空集的考查例4 已知集合A=,B=,且,则实数m的取值范围是( )A. B. C. D.【解析】A=,由得:=,则,即;,则且,即,知.综上故选A. 【点评】 解答具有条件 的试题时,不能忽略B=的情形空集是一个特殊的集合,在研究集合之间的关系与运算时必须注意【变式与拓展】4. 设集合.若,求实数的取值范围.【解析】,又,所以或,或,或(1)当时,.(2)当时,且(3)当时,且(4)当时,综上所述,实数的取值范围是.能力训练一、选择题1给出6个关系式:(1),(2),(3),(4),(5) ,(6)其中正确的个数是(C )A3 B4 C 5 D6 2(2009山东文)集合,若,则的值为( D )A0 B1 C2 D43已知集合且中至多有一个奇数,则这样的集合(A)A6个 B5个 C4个 D2个4(2009北京文)设集合,则 ( A ) A B C D5(2009广东理)已知全集,集合和的关系的韦恩(Venn)图如图1所示,则阴影部分所示的集合的元素共有 ( B )A3个 B2个 C1个 D 无穷多个6.(2007全国)设,集合,则( C )A1 B C2 D 二、填空题7. 集合A=x| x2+x-6=0, B=x| ax+1=0,若BA,则a=8. 若集合中有且仅有一个元素,则的取值集合是 9. 设集合,则集合=10.(2008福建)设P是一个数集,且至少含有两个数,若对任意a、bP,都有、ab、(除数)则称是一个数域,例如有理数集是数域,有下列命题:数域必含有、两个数;整数集是数域;若有理数集,则数集必为数域;数域必为无限集其中正确的命题的序号是 (把你认为正确的命题的序号都填上)三、解答题11记函数的定义域为,的定义域为B(1) 求集合;(2) 若, 求实数的取值范围【解析】(1 ) ,集合(2) (a1),, , 不等式的解为,集合, ,, 12设,点,但,求的值【解析】点(2,1), (1,0)E,(3,2)E, 由得;类似地由、得, 又,=1代入、得=1第二节 集合的运算自主学习1集合的基本运算(1)一般地,由属于集合且属于集合的元素所组成的集合,叫做集合与的交集;交集(2)一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合与的并集;并集(3)一般地,如果一个集合包含了我们要研究问题中所涉及的所有元素,那么这个集合称为全集,记作(4)若是一个集合,且,则称为集合相对于集合的补集,记作2集合运算的简单性质:(1);(2);(3);(4);(5),教材透析求集合的并、交、补是集合间的基本运算,运算结果仍然是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合图或数轴进而用集合语言表达,增强数形结合的思想方法典例剖析【题型1】集合的基本运算【例1】(2009浙江理)设,则( ) A B C D 【解析】 对于,因此【点评】本小题主要考查集合运算,集合间的交、补运算是高考中的常考内容,不等式型的补集注意等号,不要出错【变式与拓展】1. (2009全国卷理)设集合,全集,则集合中的元素共有 ( A )A3个 B4个 C5个 D6个 2(08北京理)已知全集,集合,那么集合等于( C )A BC D 【题型2】抽象集合的运算【例2】(2005全国)设为全集,是的三个非空子集,且,则下面论断正确的是 ( C )A. B.C. D.S1S2S3【解析】方法一:特例法 令,,,则,检验知C正确.方法二:利用图很快得答案C.【点评】 对抽象集合问题,可以用特例法将它具体化,也可用图使它直观化,不同的表示方法间可以相互转化;解题时,要善于将集合化成“最简”形式.【变式与拓展】3.(2009江西理)已知全集中有个元素,中有个元素若非空,则的元素个数为 ( D )A B C D 4. 若三个集合、满足,那么有 ( A )A. B. C. D.【题型3】 含参数问题【例3】已知集合,当时,求; 求使的实数的取值范围【解析】(1)当时, A(2) ,当时, 要使,必须,此时; 当时,使B的不存在; 当a时,要使,必须,此时 综上可知,使的实数的取值范围为. 【例4】 已知集合,且,求实数的取值范围【解析】依题意,集合,又,则,由知,(1)当时,,满足(2)当时,满足(3)当时,不满足实数的取值范围为 【点评】 对于含参数的集合问题应注意对参数取值进行讨论,有时要特别注意这一特殊集合;解决此类集合问题的途径要重视两个方面:一是分析、简化每个集合;二是利用集合间的关系进行分类讨论.【变式与拓展】5. 已知集合,.(1)若,求实数的取值范围;(2)若,求实数的取值范围;(3)若,求实数的取值范围.答案:(1)实数的取值范围为,2;(2)实数的取值范围;(3)实数的取值为3.【题型4】 集合语言的运用 【例4】 若集合,若,则实数的取值范围是 .【解析】在同一坐标系中分别作出的图像,并将图像进行左右平移,因,由图示得 【点评】本题以集合语言为载体呈现题意,主要考查学生对各种表述方式进行转化的能力、以及运用“数形结合”的思想解决问题的能力.【变式与拓展】6.(2007湖南理)设集合,(1)的取值范围是; (2)若,且的最大值为9,则的值是7. 设集合,,则实数m的取值范围_;提示:设这是开口向上的抛物线,因为其对称轴,由二次函数性质知命题又等价于 .能力训练一、选择题1(2009四川文)设集合,.则 ( C ) A. B. C. D. 2. (广东2009届六校第二次联考)设集合,集合,那么下列结论正确的是 ( B ) A B. C. D. 3. (惠州市2009届高三第三次调研)若集合则满足条件的实数的个数有( A ) 1个 B. 2个 C.3个 D. 4个4. (2009湖北理)已知,是两个向量集合,则 ( A )A B. C. D. 5. (2008辽宁理)已知集合,则集合(D ) . . . .6已知集合、,若不是的子集,则下列命题中正确的是 (C )A. 对任意的,都有 B. 对任意的,都有C. 存在,满足, D. 存在,满足,二、填空题7.(2009重庆理)若,则8.(2009天津文)设全集,若,则集合. 【解析】9. (2009湖南理)某班共30人,其中15人喜爱篮球运动,10人喜爱兵乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为_ 12_ _ .【解析】设两者都喜欢的人数为人,则只喜爱篮球的有人,只喜爱乒乓球的有人,由此可得,解得,所以,即所求人数为12人. 10(2009年上海理)已知集合,且,则实数a的取值范围是. 三、解答题11.设全集, 集合,求、.【解析】, , . , , .12. 集合,求当a取什么实数时,和同时成立【解析】 ,由此得, 由,又,和都不是关于x的方程的解,而,即,是关于的方程的解,可得或 当时,得,这与不符合,所以 (舍去);当时,可以求得,符合, 周练一、选择题1(2008湖南文)已知,则( B )A B. C D. 2(2008北京文)若集合,则集合等于( D ) A B C D 3(2009安徽理)若集合则是 ( D )A B C D 4设全集,、B为的子集,若,(,则下述结论正确的是 ( A )A B C D5. 设全集,若恒成立,则实数最大值是( C ) A C C 6.(2007江西)若集合,则中元素的个数为 ( B ) A2 B4 C6 D97. 若则,就称是伙伴关系集合,集合的所有非空子集中,具有伙伴关系的集合的个数为 ( A ) A15 B16 C28 D258设全集是实数集,与都是的子集(如右图所示),则阴影部分所表示的集合为( A )A B C D9.已知集合,则的关系最恰当的一个是( C )A. B. C. D. 10.已知,若对于所有的,均有,则的取值范围是 ( A )A B.() C.() D.【解析】,相当于点在椭圆上或它的内部,.故选A.二、填空题11.已知集合,则(填、)12. 已知集合,则=13. (2009重庆文)若是小于9的正整数,是奇数,是3的倍数,则14. (2009北京文)设A是整数集的一个非空子集,对于,如果且,那么是A的一个“孤立元”,给定,由S的3个元素构成的所有集合中,不含“孤立元”的集合共有个.w【解析】符合题意的集合是:共6个.故应填6.三、解答题15. 设集合,若,求【解析】由,可得或,解得或当时,中元素违背了互异性,舍去;当时,满足题意,故;当时,此时与矛盾,故舍去综上所述 16.已知全集,求, ,并比较它们的关系. 【解析】由,则.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论