初一数学竞赛系列讲座(7)有关恒等式的证明.doc_第1页
初一数学竞赛系列讲座(7)有关恒等式的证明.doc_第2页
初一数学竞赛系列讲座(7)有关恒等式的证明.doc_第3页
初一数学竞赛系列讲座(7)有关恒等式的证明.doc_第4页
初一数学竞赛系列讲座(7)有关恒等式的证明.doc_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

初一数学竞赛系列讲座(7)有关恒等式的证明初一数学竞赛系列讲座(7)有关恒等式的证明一、 一、知识要点 恒等式的证明分为一般恒等式的证明和条件恒等式证明,对于一般恒等式的证明,常常通过恒等变形从一边证到另一边,或证两边都等于同一个数或式。在恒等变形过程中,除了要掌握一些基本方法外,还应注意应用一些变形技巧,如:整体处理、“1”的代换等;对于条件恒等式的证明,如何处理好条件等式是关键,要认真分析条件等式的结构特征,以及它和要证明的恒等式之间的关系。二、 二、例题精讲例1 求证:a1+(1-a1)a2+(1-a1)(1-a2)a3+(1-a1)(1-a2)(1-a n-1)a n=1-(1-a1)(1-a2)(1-a n-1)(1-a n)分析:要证等式成立,只要证明1- a1- (1-a1)a2- (1-a1)(1-a2)a3 - (1-a1)(1-a2)(1-a n-1)a n =(1-a1)(1-a2)(1-a n-1)(1-a n)证明:1- a1- (1-a1)a2- (1-a1)(1-a2)a3 - (1-a1)(1-a2)(1-a n-1)a n =(1-a1) 1- a2- (1-a2)a3- (1-a2)(1-a3)a4 - (1-a2)(1-a3)(1-a n-1)a n=(1-a1) (1-a2) 1- a3- (1-a3)a4- (1-a3)(1-a4)a5 - (1-a3)(1-a4)(1-a n-1)a n=(1-a1) (1-a2) (1-a3) 1- a4- (1-a4)a5- (1-a4)(1-a5)a6 - (1-a4)(1-a5)(1-a n-1)a n=(1-a1)(1-a2)(1-a n-1)(1-a n) 原等式成立例2 证明恒等式(第二十届全俄数学奥林匹克九年级试题) 证明 评注:裂项是恒等变形中常用的一种方法例3 若abc=1,求证分析:所要求证的等式的左边是三个分母差异很大的式子,因而变形比较困难。可以充分利用abc=1,将它们化成同分母。在的分子、分母上同乘c,化成,将的分母中的“1”换成abc得 ,然后再相加即可得证。证明:abc=1 =+ =+ =1 于是命题得证。评注:“1”的代换是恒等变形中常用的技巧。例4 已知bc=ad,求证:ab(c2-d2)=(a2-b2)cd分析:将bc=ad化成比例式,然后利用比例的性质来解题。证明:bc=ad 将此三式左、右两边分别相乘得 ab(c2-d2)=(a2-b2)cd评注:条件恒等式的证明常从已知条件出发推出结论。例5 已知x=by+cz,y=cz+ax,z=ax+by,且x+y+z0.证明:分析:所证明的式子中不含x、y、z,因而可以将已知条件中的三个等式中的x、y、z看成常数,把三个式子联合起来组成一个关于a、b、c的方程,然后求出a、b、c。 再代入等式的左边证明。证明:解方程组 (2)+(3)-(1) 得y+z-x=2ax,所以 所以 同理可得, 所以 评注:将含有字母的等式视为方程,是方程思想的应用。例6 数x、y、z满足关系式证明: (第十六届全俄数学奥林匹克十年级试题)证明:将已知等式分别乘以x、y、z得 + 得 所以 即:例7 已知a+b+c=a2+b2+c2=2,求证:a(1-a)2=b(1-b)2=c(1-c)2 分析:求证的等式中的各式,恰好是多项式x(1-x)2中的x分别取a、b、c时的值。 因此,本题可转化为证明当x分别取a、b、c时,x(1-x)2的值不变。由于x(1-x)2是关于x的三次多项式,且注意到题设条件,所以我们构造三次式(x-a)(x-b)(x-c),建立它与x(1-x)2之间的某种关系。证明:(a+b+c)2= a2+b2+c2+2ab+2bc+2ca又a+b+c=a2+b2+c2=2 4=2+2ab+2bc+2ca,ab+bc+ca=1 (x-a)(x-b)(x-c)=x3-(a+b+c)x2+(ab+bc+ca)x-abc = x3-2x2+x-abc 即x(1-x)2=(x-a)(x-b)(x-c)+ abc 由此可见,当x分别取a、b、c时,x(1-x)2的值都是abc a(1-a)2=b(1-b)2=c (1-c)2评注:本题的证明采用了构造法,它构造了三次式(x-a)(x-b)(x-c),然后建立它与x(1-x)2之间的关系,再通过赋值来证明。例8设,证明(1) (1) a、b、c三数中必有两个数之和为零;(2) (2) 对任何奇数n,有分析:要求a、b、c三数中必有两个数之和为零,即要证(a+b)(b+c)(c+a)=0,故可对已知条件进行变形,使它出现(a+b)、(b+c)、(c+a)这些因式。证明:(1)由得 从已知知a、b、c0,所以abc0,且a+b+c0, 则 (bc+ca+ab)(a+b+c)-abc=0 (bc+ca+ab)(a+b+c)-abc=a (bc+ca+ab)+ (b+c) (bc+ca+ab) abc= (b+c) (bc+ca+ab)+ abc+a2c+a2babc=(b+c) (bc+ca+ab)+ a2 (b+c)=(b+c) (a2+bc+ca+ab)=(a+b)(b+c)(c+a) (a+b)(b+c)(c+a)=0,这就是说,在a+b、b+c、c+a 中至少有一个为零,即a、b、c三数中必有两个数之和为零。 (2) 由(1),不妨设a+b=0,即b= -a,因为n为奇数 又 评注:实质(bc+ca+ab)(a+b+c)-abc是关于a、b、c的一个轮换对称式。令a= -b,代入得 (bc+ca+ab)(a+b+c)-abc=(bc-bc-b2)(-b+b+c)-(-b)bc= -b2c+ b2c=0 这就是说a+b是(bc+ca+ab)(a+b+c)-abc的一个因式,由轮换对称式的性质知, b+c、a +c也是(bc+ca+ab)(a+b+c)-abc的一个因式,因此有(bc+ca+ab)(a+b+c)-abc=k (a+b)(b+c)(c+a)再令a=b=c=1代入,求出k=1,所以(bc+ca+ab)(a+b+c)-abc= (a+b)(b+c)(c+a)例9 已知ad-bc=1,求证:a2+b2+c2+d2+ab+cd1分析:所要证明的式子是一个不等式,左边的式子又较复杂,直接从已知条件出发证明不是很容易,因而可以考虑用反证法来证明。证明:假设原式不成立,即a2+b2+c2+d2+ab+cd=1 ad-bc=1,a2+b2+c2+d2+ab+cd= ad-bc a2+b2+c2+d2+ab+cd+bc-ad=0,即(a+b)2+(b+c)2+(c+d)2+(d-a)2=0 a+b=b+c=c+d=d-a=0,a=-b,b=-c,c=-d,d=a 于是a=-a,即a=0, b=c=d=0,这与ad-bc=1矛盾。 原式成立,即a2+b2+c2+d2+ab+cd1评注:正难则反。碰到正面下手较难的问题,常考虑用反证法来证明。例10证明:分析:等式左边的分子很简单,都是1,但是分母各不相同,又很复杂,因而给变形带来很大困难。通过观察发现,分母很有规律,是连续自然数的和。因此我们先来研究1+2+n,设S=1+2+n,则S= n + (n -1)+2+1,所以2S=n (n+1),S=,即1+2+n=,从而由此,左边的每一个分数均可以分解成两项,代入变形后证明。证明:设S=1+2+n,则S= n + (n -1)+2+1,所以2S=n (n+1),S=,即1+2+n=, 等式左边= =右边 等式成立评注:1、要掌握数学中一般与特殊的关系,本题通过研究1+2+n,得出的一般规律,然后将等式左边的各个分数分解,达到证明的目的。 2、结论1+2+n=在解题中经常使用,应该记住。 3、本题在求S=1+2+n时,用的是倒序相加法,在证明等式时用的是裂项相消法,这两种方法是求和问题解决的常用方法。三、 三、巩固练习选择题1、若a、b是有理数,且a 2001+b 2001=0,则A、a=b=0 B、a-b=0 C、a+b=0 D、ab=02、若abc满足a2+b2+c2=9,则代数式(a-b)2+(b-c)2+(c-a)2的最大值是( ) A、27 B、18 C、15 D、123、已知,则的值是( )A、0 B、1 C、2 D、34、如果,则下列说法正确的是( ) A、x、y、z中至少有一个为1 B、x、y、z都等于1 C、x、y、z都不等于1 D、以上说法都不对5、已知( ) A、1 B、1-q C、1-q3 D、1-2q26、已知a+b+c=10,a2+b2+c2=38,a3+b3+c3=160,则abc的值是( )A、24 B、30 C、36 D、42填空题7、已知 8、已知a-b=2,b-c= -3,c-d=5,则(a-c) (b-d) (a-d)= 9、已知abc0,a+b+c=0,则的值为 10、计算= 11、已知a、b、c、d均不为0,当ab且时, 12、已知a=,则a-1的倒数为 解答题13、求证:2(a-b) (a-c)+2(b-c) (b-a)+2(c-a) (c-b)= (b-c)2+(c-a)2+(a-b)214、求证:(a2+b2+c2) (m2+n2+k2) (am+bn+ck)2=(an-bm)2+(bk-cn)2+(cm-ak)2(拉格朗日恒等式)15、若14(a2+b2+c2)=(a+2b+3c)2,求证:abc=12316、若,求证:ax+by+cz=(x+y+z) (a+b+c)17、已知a、b、c、d满足a+b=c

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论