二次函数导学案用函数观点看一元二次方程1_第1页
二次函数导学案用函数观点看一元二次方程1_第2页
二次函数导学案用函数观点看一元二次方程1_第3页
二次函数导学案用函数观点看一元二次方程1_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第10课时 用函数观点看一元二次方程一、阅读课本:第2022页二、学习目标:1知道二次函数与一元二次方程的关系2会用一元二次方程ax2bxc0根的判别式b24ac判断二次函数yax2bxc与x轴的公共点的个数三、探索新知1问题:如图,以40m/s的速度将小球沿与地面成30角的方向击出时,球的飞行路线将是一条抛物线如果不考虑空气阻力,球的飞行高度h(单位:m)与飞行时间t(单位:s)之间具有关系h20t5t2 考虑以下问题: (1)球的飞行高度能否达到15m?如能,需要多少飞行时间? (2)球的飞行高度能否达到20m?如能,需要多少飞行时间? (3)球的飞行高度能否达到20.5m?为什么? (4)球从飞出到落地要用多少时间?2观察图象: (1)二次函数yx2x2的图象与x轴有_个交点,则一元二次方程x2x20的根的判别式_0; (2)二次函数yx26x9的图像与x轴有_个交点,则一元二次方程x26x90的根的判别式_0; (3)二次函数yx2x1的图象与x轴_公共点,则一元二次方程x2x10的根的判别式_0四、理一理知识1已知二次函数yx24x的函数值为3,求自变量x的值,可以看作解一元二次方程 _反之,解一元二次方程x24x3又可以看作已知二次函数 _的函数值为3的自变量x的值 一般地:已知二次函数yax2bxc的函数值为m,求自变量x的值,可以看作解一元二次方程ax2bxcm反之,解一元二次方程ax2bxcm又可以看作已知二次函数yax2bxc的值为m的自变量x的值2二次函数yax2bxc与x轴的位置关系: 一元二次方程ax2bxc0的根的判别式b24ac (1)当b24ac0时抛物线yax2bxc与x轴有两个交点; (2)当b24ac0时 抛物线yax2bxc与x轴只有一个交点; (3)当b24ac0时 抛物线yax2bxc与x轴没有公共点五、基本知识练习1二次函数yx23x2,当x1时,y_;当y0时,x_2二次函数yx24x6,当x_时,y33如图,一元二次方程ax2bxc0的解为_4如图一元二次方程ax2bxc3 的解为_5如图填空:(1)a_0(2)b_0(3)c_0(4)b24ac_0六、课堂训练1特殊代数式求值: 如图看图填空:(1)abc_0(2)abc_0(3)2ab _0如图2ab _04a2bc_02利用抛物线图象求解一元二次方程及二次不等式 (1)方程ax2bxc0的根为_;(2)方程ax2bxc3的根为_;(3)方程ax2bxc4的根为_;(4)不等式ax2bxc0的解集为_;(5)不等式ax2bxc0的解集为_;(6)不等式4ax2bxc0的解集为_七、目标检测根据图象填空:(1)a_0;(2)b_0;(3)c_0;(4)b24ac_0;(5)abc_0;(6)abc_0;(7)2ab_0;(8)方程ax2bxc0的根为_;(9)当y0时,x的范围为_;(10)当y0时,x的范围为_;八、课后训练1已知抛物线yx22kx9的顶点在x轴上,则k_2已知抛物线ykx22x1与坐标轴有三个交点,则k的取值范围_3已知函数yax2bxc(a,b,c为常数,且a0)的图象如图所示,则关于x的方程 ax2bxc40的根的情况是( ) A有两个不相等的正实数根B有两个异号实数根 C有两个相等实数根D无实数根4如图为二次函数yax2bxc的图

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论