




已阅读5页,还剩71页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3讲几何概型【高考会这样考】以选择题或填空题的形式考查与长度或面积有关的几何概型的求法是高考对本内容的热点考法,特别是与平面几何、函数等结合的几何概型是高考的重点内容新课标高考对几何概型的要求较低,因此高考试卷中此类试题以低、中档题为主【复习指导】本讲复习时,准确理解几何概型的意义、构造出度量区域是用几何概型求随机事件概率的关键,复习时要多反思和多领悟,掌握方法要领同时要加强与平面区域、空间几何体、平面向量、函数结合等方面的训练基础梳理1几何概型事件A理解为区域的某一子区域A,A的概率只与子区域A的几何度量(长度、面积或体积)成正比,而与A的位置和形状无关满足以上条件的试验称为几何概型2几何概型中,事件A的概率计算公式P(A).3要切实理解并掌握几何概型试验的两个基本特点(1)无限性:在一次试验中,可能出现的结果有无限多个;(2)等可能性:每个结果的发生具有等可能性一条规律对于几何概型的概率公式中的“测度”要有正确的认识,它只与大小有关,而与形状和位置无关,在解题时,要掌握“测度”为长度、面积、体积、角度等常见的几何概型的求解方法两种类型(1)线型几何概型:当基本事件只受一个连续的变量控制时(2)面型几何概型:当基本事件受两个连续的变量控制时,一般是把两个变量分别作为一个点的横坐标和纵坐标,这样基本事件就构成了平面上的一个区域,即可借助平面区域解决双基自测1(人教A版教材习题改编)在线段0,3上任投一点,则此点坐标小于1的概率为() A. B. C. D1解析点坐标小于1的区间长度为1,故所求其概率为.答案B2一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为40秒,当某人到达路口时看见的是红灯的概率是() A. B. C. D.解析以时间的长短进行度量,故P.答案B3(2012衡阳模拟)有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()解析P(A),P(B),P(C),P(D),P(A)P(C)P(D)P(B)答案A4.某人随机地在如图所示正三角形及其外接圆区域内部投针(不包括三角形边界及圆的边界),则针扎到阴影区域(不包括边界)的概率为()A. B.C. D以上全错解析设正三角形边长为a,则外接圆半径raa,所求概率P.答案B5在区间1,2上随机取一个数x,则x0,1的概率为_解析如图,这是一个长度型的几何概型题,所求概率P.答案考向一与长度有关的几何概型【例1】点A为周长等于3的圆周上的一个定点若在该圆周上随机取一点B,则劣弧的长度小于1的概率为_审题视点 用劣弧的长度与圆周长的比值解析如右图,设A、M、N为圆周的三等分点,当B点取在优弧上时,对劣弧来说,其长度小于1,故其概率为.答案 将每个基本事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解【训练1】 一只蚂蚁在三边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为_解析如图,该蚂蚁距离三角形的三个顶点的距离均超过1的长度为:1236,故所求概率为P.答案考向二与面积有关的几何概型【例2】(2012华东师大附中模拟)设有关于x的一元二次方程x22axb20.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间0,3任取的一个数,b是从区间0,2任取的一个数,求上述方程有实根的概率审题视点 (1)为古典概型,利用列举法求概率(2)建立ab平面直角坐标系,将问题转化为与面积有关的几何概型解设事件A为“方程x22axb20有实根”当a0,b0时,方程x22axb20有实根的充要条件为ab.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)其中第一个数表示a的取值,第二个数表示b的取值事件A中包含9个基本事件,事件A发生的概率为P(A).(2)试验的全部结果所构成的区域为(a,b)|0a3,0b2,构成事件A的区域为(a,b)|0a3,0b2,ab,所以所求的概率为P(A). 数形结合为几何概型问题的解决提供了简捷直观的解法用图解题的关键:用图形准确表示出试验的全部结果所构成的区域,由题意将已知条件转化为事件A满足的不等式,在图形中画出事件A发生的区域,利用公式可求【训练2】 (2011福建)如图,矩形ABCD中,点E为边CD的中点若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于()A. B. C. D.解析SABE|AB|AD|,S矩形ABCD|AB|AD|.故所求概率P.答案C考向三与角度、体积有关的几何概型【例3】在RtABC中,A30,过直角顶点C作射线CM交线段AB于M,求使|AM|AC|的概率审题视点 如图所示,因为过一点作射线是均匀的,因而应把在ACB内作射线CM看做是等可能的,基本事件是射线CM落在ACB内任一处,使|AM|AC|的概率只与BCC的大小有关,这符合几何概型的条件解设事件D为“作射线CM,使|AM|AC|”在AB上取点C使|AC|AC|,因为ACC是等腰三角形,所以ACC75,A907515,90,所以P(D). 几何概型的关键是选择“测度”,如本例以角度为“测度”因为射线CM落在ACB内的任意位置是等可能的若以长度为“测度”,就是错误的,因为M在AB上的落点不是等可能的【训练3】 (2011长沙模拟)在棱长为2的正方体ABCDA1B1C1D1中,点O为底面ABCD的中心,在正方体ABCDA1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为_解析点P到点O的距离大于1的点位于以O为球心,以1为半径的半球外记点P到点O的距离大于1为事件A,则P(A)1.答案1规范解答21如何解决概率与函数的综合问题【问题研究】 所谓概率,就是某种事件发生的可能性的大小,而“事件”可以是日常生活中常见的例子,也可以是有关的数学问题,如以函数的基本性质(定义域、值域、单调性、奇偶性、周期性)为背景,设置概型,提出问题,考查考生综合分析问题、解决问题的能力.【解决方案】 首先认真阅读题目,把其中的有用信息向我们熟悉的知识方面转化,实现知识的迁移,然后再利用概率的知识去解决.【示例】 (本题满分12分)(2011潍坊模拟)已知关于x的二次函数f(x)ax24bx1.(1)设集合P1,2,3和Q1,1,2,3,4,分别从集合P和Q中随机取一个数作为a和b,求函数yf(x)在区间1,)上是增函数的概率;(2)设点(a,b)是区域内的一点,求函数yf(x)在区间1,)上是增函数的概率 本题以“二次函数的单调性”为背景,首先写出事件发生所满足的条件,在第(1)问中,给出了有限个数据,从而判断是古典概型问题,利用列举法写出事件发生的总数以及满足条件的事件发生的个数,再利用公式求之;第(2)问中,a和b有无限个数据,所以是几何概型问题,首先计算事件发生的总数与满足条件的事件发生的个数的测度,再利用公式求之解答示范 (1)函数f(x)ax24bx1的图象的对称轴为直线x,要使f(x)ax24bx1在区间1,)上为增函数,当且仅当a0且1,即2ba.(2分)若a1,则b1;若a2,则b1或1;若a3,则b1或1.事件包含基本事件的个数是1225.(5分)所求事件的概率为.(6分)(2)由(1),知当且仅当2ba且a0时,函数f(x)ax24bx1在区间1,)上为增函数,(8分)依条件可知事件的全部结果所构成的区域为,构成所求事件的区域为三角形部分由得交点坐标为,(10分)所求事件的概率为P.(12分) 本题中先将f(x)在1,)上为增函数转化为满足条件2ba且a0,然后再联系已知条件,将问题转化为几何概型,实现了知识的逐步迁移,这种转化迁移的思想值得考生注意,另外,对于二次函数f(x)ax2bxc(a0),在某一区间m,)上单调递增的充要条件是切勿漏掉a0.【试一试】 已知关于x的一元二次方程x22(a2)xb2160.(1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率;(2)若a2,6,b0,4,求方程没有实根的概率尝试解答(1)基本事件(a,b)共有36个,方程有正根等价于a20,16b20,0,即a2,4b4,(a2)2b216.设“方程有两个正根”为事件A,则事件A包含的基本事件为(6,1),(6,2),(6,3),(5,3),共4个,故所求的概率为P(A).(2)试验的全部结果构成区域(a,b)|2a6,0b4,其面积为S()16,设“方程无实根”为事件B,则构成事件B的区域为B(a,b)|2a6,0b4,(a2)2b216,其面积为S(B)424,故所求的概率为P(B)第1讲随机事件的概率【高考会这样考】1随机事件的概率在高考中多以选择题、填空题的形式考查,也时常在解答题中出现,应用题也是常考题型,并且常与统计知识放在一块考查2借助古典概型考查互斥事件、对立事件的概率求法【复习指导】随机事件的概率常与古典概型、互斥、对立事件、统计等相结合进行综合考查,对事件类型的准确判断和对概率运算公式的熟练掌握是解题的基础,因此,复习时要通过练习不断强化对事件类型的理解和公式的掌握,弄清各事件类型的特点与本质区别,准确判断事件的类型是解题的关键基础梳理1随机事件和确定事件(1)在条件S下,一定会发生的事件叫做相对于条件S的必然事件(2)在条件S下,一定不会发生的事件叫做相对于条件S的不可能事件(3)必然事件与不可能事件统称为确定事件(4)在条件S下可能发生也可能不发生的事件,叫做随机事件(5)确定事件和随机事件统称为事件,一般用大写字母A,B,C表示2频率与概率(1)在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率(2)对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率3互斥事件与对立事件(1)互斥事件:若AB为不可能事件(AB),则称事件A与事件B互斥,其含义是:事件A与事件B在任何一次试验中不会同时发生(2)对立事件:若AB为不可能事件,而AB为必然事件,那么事件A与事件B互为对立事件,其含义是:事件A与事件B在任何一次试验中有且仅有一个发生4概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率:P(A)1.(3)不可能事件的概率:P(A)0.(4)互斥事件的概率加法公式:P(AB)P(A)P(B)(A,B互斥)P(A1A2An)P(A1)P(A2)P(An)(A1,A2,An彼此互斥)(5)对立事件的概率:P()1P(A)一条规律互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件两种方法求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的求和公式计算;(2)间接法:先求此事件的对立事件的概率,再用公式P(A)1P(),即运用逆向思维(正难则反),特别是“至多”、“至少”型题目,用间接法就显得比较简便双基自测1(人教A版教材习题改编)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A必然事件 B随机事件C不可能事件 D无法确定答案B2在n次重复进行的试验中,事件A发生的频率为,当n很大时,P(A)与的关系是()AP(A) BP(A)CP(A) DP(A)解析事件A发生的概率近似等于该频率的稳定值答案A3(2012兰州月考)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A至少有一个红球与都是红球B至少有一个红球与都是白球C至少有一个红球与至少有一个白球D恰有一个红球与恰有二个红球解析对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个互斥而不对立答案D4(2011陕西)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是()A. B. C. D.解析若用1,2,3,4,5,6代表6处景点,显然甲、乙两人选择结果为1,1、1,2、1,3、6,6,共36种;其中满足题意的“同一景点相遇”包括1,1、2,2、3,3、6,6,共6个基本事件,所以所求的概率值为.答案D5(2011湖北)在30瓶饮料中,有3瓶已过了保质期从这30瓶饮料中任取2瓶,则至少取到1瓶已过保质期饮料的概率为_(结果用最简分数表示)解析所取的2瓶中都是不过期的饮料的概率为P,则至少有1瓶为已过保质期饮料的概率1P.答案考向一互斥事件与对立事件的判定【例1】判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由从40张扑克牌(红桃、黑桃、方块、梅花点数从110各10张)中,任取一张(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”审题视点 可用集合的观点判断解(1)是互斥事件,不是对立事件原因是:从40张扑克牌中任意抽取1张,“抽出红桃”与“抽出黑桃”是不可能同时发生的,所以是互斥事件,但是,不能保证其中必有一个发生,这是由于还有可能抽出“方块”或者“梅花”,因此,二者不是对立事件(2)既是互斥事件,又是对立事件原因是:从40张扑克牌中,任意抽取1张“抽出红色牌”与“抽出黑色牌”两个事件不可能同时发生,但其中必有一个发生,所以它们既是互斥事件,又是对立事件(3)不是互斥事件,也不是对立事件原因是:从40张扑克牌中任意抽取1张“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”这两个事件可能同时发生,如抽得点数为10,因此,二者不是互斥事件,当然不可能是对立事件 对互斥事件要把握住不能同时发生,而对于对立事件除不能同时发生外,其并事件应为必然事件,这些也可类比集合进行理解,具体应用时,可把所有试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件的关系【训练1】 一个均匀的正方体的玩具的各个面上分别标以数字1,2,3,4,5,6.将这个玩具向上抛掷1次,设事件A表示向上的一面出现奇数点,事件B表示向上的一面出现的点数不超过3,事件C表示向上的一面出现的点数不小于4,则()AA与B是互斥而非对立事件BA与B是对立事件CB与C是互斥而非对立事件DB与C是对立事件解析根据互斥事件与对立事件的意义作答,AB出现点数1或3,事件A,B不互斥更不对立;BC,BC,故事件B,C是对立事件答案D考向二随机事件的概率与频率【例2】(2011湖南)某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关据统计,当X70时,Y460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率审题视点 第一问中的统计表是降雨量的统计表,只要根据给出的数据进行统计计算即可;第二问中根据给出的X,Y的函数关系,求出Y490或者Y530对应的X的范围,结合第一问的概率分布情况求解,或者求解其对立事件的概率解(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(2)由已知得Y425,故P(“发电量低于490万千瓦时或超过530万千瓦时”)P(Y490或Y530)P(X130或X210)P(X70)P(X110)P(X220).故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为. 概率可看成频率在理论上的稳定值,它从数量上反映了随机事件发生的可能性的大小,它是频率的科学抽象,当试验次数越来越多时频率向概率靠近,只要次数足够多,所得频率就近似地当作随机事件的概率【训练2】 某市统计的20082011年新生婴儿数及其中男婴数(单位:人)见下表:时间2008年2009年2010年2011年新生婴儿数21 84023 07020 09419 982男婴数11 45312 03110 29710 242(1)试计算男婴各年的出生频率(精确到0.001);(2)该市男婴出生的概率约是多少?解(1)2008年男婴出生的频率为fn(A)0.524.同理可求得2009年、2010年和2011年男婴出生的频率分别约为0.521、0.512、0.513.(2)由以上计算可知,各年男婴出生的频率在0.510.53之间,所以该市男婴出生的概率约为0.52.考向三互斥事件、对立事件的概率【例3】据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.(1)求该企业在一个月内被消费者投诉不超过1次的概率;(2)假设一月份与二月份被消费者投诉的次数互不影响,求该企业在这两个月内共被消费者投诉2次的概率审题视点 (1)根据互斥事件,第(1)问可转化为求被消费者投诉0次和1次的概率和(2)第(2)问可转化为求以下三种情形的概率和:1,2月份各被投诉1次;1,2月份各被投诉0,2次;1,2月份各被投诉2,0次解法一(1)设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”,P(AB)P(A)P(B)0.40.50.9.(2)设事件Ai表示“第i个月被投诉的次数为0”,事件Bi表示“第i个月被投诉的次数为1”,事件Ci表示“第i个月被投诉的次数为2”,事件D表示“两个月内共被投诉2次”P(Ai)0.4,P(Bi)0.5,P(Ci)0.1(i1,2),两个月中,一个月被投诉2次,另一个月被投诉0次的概率为P(A1C2A2C1),一、二月份均被投诉1次的概率为P(B1B2),P(D)P(A1C2A2C1)P(B1B2)P(A1C2)P(A2C1)P(B1B2),由事件的独立性得P(D)0.40.10.10.40.50.50.33.法二(1)设事件A表示“一个月内被投诉2次”,事件B表示“一个月内被投诉的次数不超过1次”P(A)0.1,P(B)1P(A)10.10.9.(2)同法一 本题主要考查随机事件,互斥事件有一个发生的概率及相互独立事件同时发生的概率;实际生活中的概率问题,在阅读理解的基础上,利用互斥事件分类,有时还借助对立事件寻求间接求解问题的捷径,这类问题重在考查学生思维的灵活性和解决实际问题的能力【训练3】 某商场有奖销售中,购满100元商品得1张奖券,多购多得,1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个设1张奖券中特等奖、一等奖、二等奖的事件分别为A、B、C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率解(1)P(A),P(B),P(C).故事件A,B,C的概率分别为,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖设“1张奖券中奖”这个事件为M,则MABC.A、B、C两两互斥,P(M)P(ABC)P(A)P(B)P(C).故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,P(N)1P(AB)1.故1张奖券不中特等奖且不中一等奖的概率为.难点突破24事件对立与互斥的辨别问题对事件的互斥性与对立性的辨别,在解题中要根据问题的具体情况作出准确的判断互斥事件是不可能同时发生的两个事件,其概率满足加法公式,即若A,B互斥,则P(AB)P(A)P(B);对立事件是必然有一个发生的两个互斥事件,也就是说对立的两个事件首先必须是互斥的,而且这两个事件之和是一个必然事件,即一个事件A与它的对立事件的概率之间有关系式P(A)P()1,用好这个关系对解决概率问题是非常有用的,它往往能使复杂的问题简单化【示例1】 (2012苏州模拟)甲:A1,A2是互斥事件;乙:A1,A2是对立事件,那么()A甲是乙的充分但不必要条件B甲是乙的必要但不充分条件C甲是乙的充要条件D甲既不是乙的充分条件,也不是乙的必要条件【示例2】 抛掷一枚均匀的正方体骰子(各面分别标有数字1、2、3、4、5、6),事件A表示“朝上一面的数是奇数”,事件B表示“朝上一面的数不超过3”,求P(AB)第2讲古典概型【高考会这样考】1考查古典概型概率公式的应用,尤其是古典概型与互斥、对立事件的综合问题更是高考的热点2在解答题中古典概型常与统计相结合进行综合考查,考查学生分析和解决问题的能力,难度以中档题为主【复习指导】1掌握解决古典概型的基本方法,列举基本事件、随机事件,从中找出基本事件的总个数,随机事件所含有的基本事件的个数2复习时要加强与统计相关的综合题的训练,注重理解、分析、逻辑推理能力的提升基础梳理1基本事件的特点(1)任何两个基本事件是互斥的(2)任何事件(除不可能事件)都可以表示成基本事件的和2古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型(1)试验中所有可能出现的基本事件只有有限个(2)每个基本事件出现的可能性相等3古典概型的概率公式P(A).一条规律从集合的角度去看待概率,在一次试验中,等可能出现的全部结果组成一个集合I,基本事件的个数n就是集合I的元素个数,事件A是集合I的一个包含m个元素的子集故P(A).两种方法(1)列举法:适合于较简单的试验(2)树状图法:适合于较为复杂的问题中的基本事件的探求另外在确定基本事件时,(x,y)可以看成是有序的,如(1,2)与(2,1)不同;有时也可以看成是无序的,如(1,2)与(2,1)相同双基自测1(人教A版教材习题改编)一枚硬币连掷2次,只有一次出现正面的概率为()A. B. C. D.解析一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反),而只有一次出现正面的事件包括(正,反),(反,正),故其概率为.答案D2甲、乙、丙三名同学站成一排,甲站在中间的概率是()A. B. C. D.解析甲共有3种站法,故站在中间的概率为.答案C3掷一颗骰子,观察掷出的点数,则掷得奇数点的概率为()A. B. C. D.解析掷一颗骰子共有6种情况,其中奇数点的情况有3种,故所求概率为:.答案C4从1,2,3,4,5中随机选取一个数为a,从1,2,3中随机选取一个数为b,则ba的概率是()A. B. C. D.解析基本事件的个数有5315(种),其中满足ba的有3种,所以ba的概率为.答案D5(2012泰州联考)三张卡片上分别写上字母E、E、B,将三张卡片随机地排成一行,恰好排成英文单词BEE的概率为_解析三张卡片排成一排共有BEE,EBE,EEB三种情况,故恰好排成BEE的概率为.答案考向一基本事件数的探求【例1】做抛掷两颗骰子的试验:用(x,y)表示结果,其中x表示第一颗骰子出现的点数,y表示第二颗骰子出现的点数,写出:(1)试验的基本事件;(2)事件“出现点数之和大于8”;(3)事件“出现点数相等”;(4)事件“出现点数之和大于10”审题视点 用列举法一一列举解(1)这个试验的基本事件为:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)(2,1),(2,2),(2,3),(2,4),(2,5),(2,6)(3,1),(3,2),(3,3),(3,4),(3,5),(3,6)(4,1),(4,2),(4,3),(4,4),(4,5),(4,6)(5,1),(5,2),(5,3),(5,4),(5,5),(5,6)(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)(2)事件“出现点数之和大于8”包含以下10个基本事件(3,6),(4,5),(4,6)(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)(3)事件“出现点数相等”包含以下6个基本事件(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)(4)事件“出现点数之和大于10”包含以下3个基本事件(5,6),(6,5),(6,6) 基本事件数的探求主要有两种方法:列举法和树状图法【训练1】 用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,写出:(1)试验的基本事件;(2)事件“3个矩形颜色都相同”;(3)事件“3个矩形颜色都不同”解(1)所有可能的基本事件共27个(2)由图可知,事件“3个矩形都涂同一颜色”包含以下3个基本事件:红红红,黄黄黄,蓝蓝蓝(3)由图可知,事件“3个矩形颜色都不同”包含以下6个基本事件:红黄蓝,红蓝黄,黄红蓝,黄蓝红,蓝红黄,蓝黄红考向二古典概型【例2】现有8名2012年伦敦奥运会志愿者,其中志愿者A1,A2,A3通晓日语,B1,B2,B3通晓俄语,C1,C2通晓韩语从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组(1)求A1被选中的概率;(2)求B1和C1不全被选中的概率审题视点 确定基本事件总数,可用排列组合或用列举法,确定某事件所包含的基本事件数,用公式求解解(1)从8人中选出日语、俄语和韩语志愿者各1名,其一切可能的结果组成的基本事件共有CCC18个由于每一个基本事件被抽取的机会均等,因此这些基本事件的发生是等可能的用M表示“A1恰被选中”这一事件,事件M由CC6,因而P(M).(2)用N表示“B1、C1不全被选中”这一事件,则其对立事件表示“B1、C1全被选中”这一事件,由于包含(A1,B1,C1),(A2,B1,C1),(A3,B1,C1)3个结果,事件有3个基本事件组成,所以P(),由对立事件的概率公式得P(N)1P()1. 古典概型是基本事件个数有限,每个基本事件发生的概率相等的一种概率模型,其概率等于随机事件所包含的基本事件的个数与基本事件的总个数的比值【训练2】 (2011全国新课标)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A. B. C. D.解析甲、乙两人都有3种选择,共有339(种)情况,甲、乙两人参加同一兴趣小组共有3种情况甲、乙两人参加同一兴趣小组的概率P.答案A考向三古典概型的综合应用【例3】(2011广东)在某次测验中,有6位同学的平均成绩为75分用xn表示编号为n(n1,2,6)的同学所得成绩,且前5位同学的成绩如下:编号n12345成绩xn7076727072(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率审题视点 本题考查平均数、标准差、古典概型概率的计算(1)由这6位同学的平均成绩为75分,建立关于x6的方程,可求得x6,然后求方差,再求标准差;(2)用列举法可得所求古典概型的概率解(1)这6位同学的平均成绩为75分,(7076727072x6)75,解得x690,这6位同学成绩的方差s2(7075)2(7675)2(7275)2(7075)2(7275)2(9075)249,标准差s7.(2)从前5位同学中,随机地选出2位同学的成绩有:(70,76),(70,72),(70,70),(70,72),(76,72),(76,70),(76,72),(72,70),(72,72),(70,72),共10种,恰有1位同学成绩在区间(68,75)中的有:(70,76),(76,72),(76,70),(76,72),共4种,所求的概率为0.4,即恰有1位同学成绩在区间(68,75)中的概率为0.4. 有关古典概型与统计结合的题型是高考考查概率的一个重要题型,已成为高考考查的热点,概率与统计结合题,无论是直接描述还是利用频率分布表、分布直方图、茎叶图等给出信息,只需要能够从题中提炼出需要的信息,则此类问题即可解决【训练3】 一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):轿车A轿车B轿车C舒适型100150z标准型300450600按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆(1)求z的值;(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:94,8.6,9.2,9.6,8.7,9.3,9.0,8.2,把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率解(1)设该厂这个月共生产轿车n辆,由题意得,所以n2 000,则z2 000100300150450600400.(2)设所抽样本中有a辆舒适型轿车,由题意得,则a2.因此抽取的容量为5的样本中,有2辆舒适型轿车,3辆标准型轿车用A1,A2表示2辆舒适型轿车,用B1,B2,B3表示3辆标准型轿车,用E表示事件“在该样本中任取2辆,其中至少有1辆舒适型轿车”,则基本事件空间包含的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(B1,B2),(B1,B3),(B2,B3),共10个事件E包含的基本事件有:(A1,A2),(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),共7个故P(E),即所求概率为.(3)样本平均数(9.48.69.29.68.79.39.08.2)9.设D表示事件“从样本中任取一个数,该数与样本平均数之差的绝对值不超过0.5”,则基本事件空间中有8个基本事件,事件D包含的基本事件有:9.4,8.6,9.2,8.7,9.3,9.0,共6个,所以P(D),即所求概率为.阅卷报告17缺少必要的文字说明而失分【问题诊断】 在阅卷中发现不少考生在解答概率问题的解答题时,只写出所求结果,缺少必要的文字说明,没有按要求列出基本事件,致使丢了不该丢的分.【防范措施】 正确写出基本事件空间,可以利用列表、画树状图等方法,以防遗漏.【示例】(2011山东)甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任取2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率错因未写出基本事件的空间,缺少必要的文字说明实录(1)P.(2)P.正解(1)甲校两男教师分别用A、B表示,女教师用C表示;乙校男教师用D表示,两女教师分别用E、F表示从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种,从中选出2名教师性别相同的结果有:(A,D),(B,D),(C,E),(C,F),共4种,选出的2名教师性别相同的概率为P.(2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种从中选出2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种,选出的2名教师来自同一学校的概率为P.【试一试】 从含有两件正品和一件次品的3件产品中每次任取一件(1)每次取出后不放回,连续取两次;(2)每次取出后放回,连续取两次试分别求取出的两件产品中恰有一件次品的概率尝试解答(1)用a1,a2和b1表示两件正品和一件次品,则不放回地抽取两次,其一切可能的结果为:(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2)其中小括号内左边的字母表示第一次取出的产品,右边的字母表示第二次取出的产品,用A表示“取出的两件产品中,恰好有一件次品”这一事件,则A所含的结果为(a1,b1),(a2,b1),(b1,a1),(b1,a2),即基本事件的总数n6,事件A包含的事件总数m4.故P(A).(2)若为有放回的抽取,其基本事件包含的结果共有(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a1),(b1,a2),(b1,b1),用B表示“恰有一件产品为次品”这一事件,则B包含的结果为(a1,b1),(a2,b1),(b1,a1),(b1,a2),即基本事件的总数n9,事件B包含的事件总数m4.故P(B).第4讲离散型随机变量的分布列【高考会这样考】1考查离散型随机变量及其分布列的概念理解;2两点分布和超几何分布的简单应用【复习指导】复习时,要会求与现实生活有密切联系的离散型随机变量的分布列,掌握两点分布与超几何分布列,并会应用基础梳理1离散型随机变量的分布列(1)随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量,随机变量常用字母X,Y,等表示(2)离散型随机变量对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量(3)分布列设离散型随机变量X可能取得值为x1,x2,xi,xn,X取每一个值xi(i1,2,n)的概率为P(Xxi)pi,则称表Xx1x2xixnPp1p2pipn为随机变量X的概率分布列,简称X的分布列(4)分布列的两个性质pi0,i1,2,n;p1p2pn_1_.2两点分布如果随机变量X的分布列为X10Ppq其中0p1,q1p,则称离散型随机变量X服从参数为p的两点分布3超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件Xk发生的概率为:P(Xk)(k0,1,2,m),其中mminM,n,且nN,MN,n、M、NN*,则称分布列X01mP为超几何分布列 一类表格统计就是通过采集数据,用图表或其他方法去处理数据,利用一些重要的特征数信息进行评估并做出决策,而离散型随机变量的分布列就是进行数据处理的一种表格第一行数据是随机变量的取值,把试验的所有结果进行分类,分为若干个事件,随机变量的取值,就是这些事件的代码;第二行数据是第一行数据代表事件的概率,利用离散型随机变量的分布列,很容易求出其期望和方差等特征值 两条性质(1)第二行数据中的数都在(0,1)内;(2)第二行所有数的和等于1.三种方法(1)由统计数据得到离散型随机变量分布列;(2)由古典概型求出离散型随机变量分布列;(3)由互斥事件、独立事件的概率求出离散型随机变量分布列双基自测1抛掷均匀硬币一次,随机变量为()A出现正面的次数 B出现正面或反面的次数C掷硬币的次数 D出现正、反面次数之和解析抛掷均匀硬币一次出现正面的次数为0或1.答案A2如果X是一个离散型随机变量,那么下列命题中假命题是()AX取每个可能值的概率是非负实数BX取所有可能值的概率之和为1CX取某2个可能值的概率等于分别取其中每个值的概率之和DX在某一范围内取值的概率大于它取这个范围内各个值的概率之和3已知随机变量X的分布列为:P(Xk),k1,2,则P(2X4)等于()A. B. C. D.解析P(2X4)P(X3)P(X4).答案A4袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X,则X的所有可能取值个数为()A25 B10 C7 D6解析X的可能取值为123,134,14523,15642,25734,358,459.答案C5设某运动员投篮投中的概率为P0.3,则一次投篮时投中次数的分布列是_解析此分布列为两点分布列答案X01P0.70.3考向一由统计数据求离散型随机变量的分布列【例1】(2011北京改编)以下茎叶图记录了甲、乙两组各四名同学的植树棵数分别从甲、乙两组中各随机选取一名同学(1)求这两名同学的植树总棵数y的分布列;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CRRA 2301-2024国有企业废旧物资交易平台服务流程管理规范
- 高中孙子吴起列传课件
- 高一课件教学课件
- 电力行业2025年投资策略分析报告:火电、绿电储能
- 高一化学必修二课件
- 《婚姻解除财产分割协议书:婚前婚后财产清晰划分》
- 猪场租赁与养殖废弃物处理技术支持合同
- 夫妻财产分割离婚后子女抚养及赡养费支付合同
- 广告投放效果优化代理合同
- 骨髓穿刺课件
- 乡镇综合行政执法队队长试用期满转正工作总结
- 2025天津医科大学眼科医院第三批招聘1人备考考试试题及答案解析
- 2025年法院书记员招聘考试笔试试题含答案
- 教科版四年级上册科学全册教案
- 水稻螟虫绿色防控
- 2024版2025秋新版小学道德与法治三年级上册全册教案教学设计含反思
- 家电合伙合同(标准版)
- CPK、PPK和SPC(X-R控制图)模板
- 2025年二级建造师考试施工管理真题及答案
- 光伏发电运行维护定期巡视检查项目和周期
- 特种设备(锅炉、压力容器)培训考试试题及答案
评论
0/150
提交评论