



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2章 二次函数确定二次函数的表达式一、教学目标:1、知识与技能:能够根据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式,并会根据条件利用待定系数法求二次函数的表达式.2、过程与方法:经历确定适当的直角坐标系以及根据点的坐标确定二次函数表达式的思维过程,类比求一次函数的表达式的方法,体会求二次函数表达式的思想方法.3、情感、态度与价值观:能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识. 二、学习重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、学习难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.四、教学过程设计:、复习引入:之前讲过二次函数表达式的集中常见形式,让学生认真回忆,可以共同复习,也可以独自复习。结果如下1.二次函数表达式的一般形式是什么? y=ax+bx+c (a,b,c为常数,a 0)2. 二次函数表达式的顶点式是什么? (a 0).3. 若二次函数y=ax+bx+c(a0)与x轴两交点为(,0),( ,0)则其函数表达式可以表示成什么形式? (a 0).教师提问:如果要确定二次函数的关系式y=ax+bx+c (a,b,c为常数,a 0),通常又需要几个条件 ?学生:思考讨论后,回答、 初步探究:引例 如图2-7是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其表达式吗? 解:根据图象是一抛物线且顶点坐标为(4,3),因此设它的关系式为,又图象过点(10,0),解得 ,图象的表达式为. 想一想:确定二次函数的表达式需要几个条件?小结:确定二次函数的关系式y=ax+bx+c (a,b,c为常数,a 0),通常需要3 个条件; 当知道顶点坐标(h,k)和知道图象上的另一点坐标两个条件,用顶点式可以确定二次函数的关系式.例1 已知二次函数y=ax2+c的图象经过点(2,3)和(1,3),求出这个二次函数的表达式. 分析:二次函数y=ax2+c中只需确定a,c两个系数,需要知道两个点坐标,因此此题只要把已知两点代入即可.解:将点(2,3)和(1,3)分别代入二次函数y=ax2+c中,得 解这个方程组,得 所求二次函数表达式为:y=2x25.、 深入探究: 例: 已知二次函数的图象与y轴交点的纵坐标为1,且经过点(2,5)和(-2,13),求这个二次函数的表达式.解法1 解:因为抛物线与y轴交点纵坐标为1,所以设抛物线关系式为,图象经过点(2,5)和(-2,13)解得:a=2,b=-2.这个二次函数关系式为 .解法2 解:设抛物线关系式为 y=ax+bx+c ,由题意可知,图象经过点(0,1),(2,5)和(-2,13),解方程组得:a=2,b=-2,c=1.这个二次函数关系式为 、练习:1.已知二次函数的图象顶点是(-1,1),且经过点(1,-3),求这个二次函数的表达式.2. 已知二次函数y=x+bx+c的图象经过点(1,1)与(2,3)两点.求这个二次函数的表达式.答案:1.用顶点式;2.;、 课时小结:1本节课用到的主要的数学思想方法:数形结合、方程的思想目的:引导学生小结本课的知识及数学方法,使知识系统化2. 学习了在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?(1)用顶点式确定二次函数关系式,当知道顶点(h,k)坐标时,那么再知道图象上的另一点坐标,就可以确定这个二次函数的关系式. (2) 用一般式y=a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- (正式版)DB15∕T 2123-2021 《绒山羊双羔技术规程》
- 承包煤矿供暖合同范本
- 青岛地区九年级数学试卷
- (正式版)DB15∕T 2049-2020 《互叶醉鱼草育苗技术规程》
- 售房签订中介合同范本
- 工人园林劳务合同范本
- 2025-2030中国聚对苯二甲酸丙二醇酯(PTT)行业发展动态及投资趋势分析报告
- 临时围堰施工方案(3篇)
- 租赁过渡合同范本
- 卖房订房合同范本
- 【高质量】如何进行有效的校本研修PPT文档
- 水工闸门课件
- 水泥生产企业生产安全事故综合应急预案
- 全自动血液细胞分析仪产品技术要求深圳迈瑞
- 找对英语学习方法的第一本书
- 安徽涵丰科技有限公司年产6000吨磷酸酯阻燃剂DOPO、4800吨磷酸酯阻燃剂DOPO衍生品、12000吨副产品盐酸、38000吨聚合氯化铝、20000吨固化剂项目环境影响报告书
- 《诺丁山》经典台词
- 对铁路机车乘务员规章培训的探讨与实践
- 临床医学实验室 仪器设备一览表格模板
- 《绿色建筑》绿色建筑与建筑节能课件
- 二级生物安全实验室备案登记申请表(模板)
评论
0/150
提交评论