全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
绝对值不等式的证明知识与技能:1. 理解绝对值的三角不等式,2应用绝对值的三角不等式过程方法与能力:培养学生的抽象能力和逻辑思维能力;提高分析问题、解决问题的能力.情感态度与价值观:让学生通过对具体事例的观察、归纳中找出规律,得出结论,培养学生解决应用问题的能力和严谨的学习态度。教学重点:理解绝对值的三角不等式应用绝对值的三角不等式教学难点:应用绝对值的三角不等式教学过程:一、引入:证明一个含有绝对值的不等式成立,除了要应用一般不等式的基本性质之外,经常还要用到关于绝对值的和、差、积、商的性质:(1) (2)(3) (4)请同学们思考一下,是否可以用绝对值的几何意义说明上述性质存在的道理?实际上,性质和可以从正负数和零的乘法、除法法则直接推出;而绝对值的差的性质可以利用和的性质导出。因此,只要能够证明对于任意实数都成立即可。我们将在下面的例题中研究它的证明。现在请同学们讨论一个问题:设为实数,和哪个大?显然,当且仅当时等号成立(即在时,等号成立。在时,等号不成立)。同样,当且仅当时,等号成立。含有绝对值的不等式的证明中,常常利用、及绝对值的和的性质。定理(绝对值三角形不等式)如果是实数,则注:当为复数或向量时结论也成立.特别注意等号成立的条件.定理推广:.当且仅当都非正或都非负时取等号.探究:利用不等式的图形解不等式 1. ; 23利用绝对值的几何意义,解决问题:要使不等式有解,要满足什么条件?二、典型例题:例1、证明 (1), (2)。证明(1)如果那么所以如果那么所以(2)根据(1)的结果,有,就是,。所以,。例2、证明 。例3、证明 。思考:如何利用数轴给出例3的几何解释?(设A,B,C为数轴上的3个点,分别表示数a,b,c,则线段当且仅当C在A,B之间时,等号成立。这就是上面的例3。特别的,取c0(即C为原点),就得到例2的后半部分。)探究:试利用绝对值的几何意义,给出不等式的几何解释?含有绝对值的不等式常常相加减,得到较为复杂的不等式,这就需要利用例1,例2和例3的结果来证明。例4、已知 ,求证 证明 (1), (2)由(1),(2)得:例5、已知 求证:。证明 ,由例1及上式,。注意: 在推理比较简单时,我们常常将几个不等式连在一起写。但这种写法,只能用于不等号方向相同的不等式。三、小结:借助图形的直观性来研究不等式的问题,是学习不等式的一个重要方法,特别是利用绝对值和绝对值不等式的几何意义来解不等式或者证明不等式,往往能使问题变得直观明了,帮助我们迅速而准确地寻找到问题的答案。关键是在遇到相关问题时,能否准确地把握不等式的图形,从而有效地解决问题。四、练习:1、已知求证:。2、已知求证:。五、作业:1求证 2已知 求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026山东第一医科大学附属肿瘤医院第二批招聘备考题库及答案详解(夺冠系列)
- 初一昌平考试期末题目及答案
- 策划师考试试卷及答案
- 医院药师培训试题及答案
- 2025-2026人教版初中七年级语文卷
- 2025-2026七年级上道德与法治期末测试
- 《高寒退化坡草地客土喷播修复规程》征求意见稿编制说明
- 公共卫生许可证管理制度
- 卫生室组织管理制度
- 社区服务站卫生监督制度
- 新疆环保行业前景分析报告
- 2025~2026学年福建省泉州五中七年级上学期期中测试英语试卷
- 联合办公合同范本
- 2025年生物多样性保护与生态修复项目可行性研究报告
- 2025年黑龙江省检察院公益诉讼业务竞赛测试题及答案解析
- 一氧化碳中毒救治课件
- 广东事业单位历年考试真题及答案
- 《会计信息化工作规范》解读(杨杨)
- 工程机械设备租赁服务方案投标文件(技术方案)
- 高海拔地区GNSS大坝监测技术研究
- 实施指南(2025)《DL-T 1630-2016气体绝缘金属封闭开关设备局部放电特高频检测技术规范》
评论
0/150
提交评论