解析几何专题:题型篇之最值与范围问题.doc_第1页
解析几何专题:题型篇之最值与范围问题.doc_第2页
解析几何专题:题型篇之最值与范围问题.doc_第3页
解析几何专题:题型篇之最值与范围问题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆锥曲线中的最值和范围问题(一)高考在考什么【考题回放】1已知双曲线(a0,b0)的右焦点为F,若过点F且倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是(C )A.( 1,2) B. (1,2) C. D.(2,+)2 P是双曲线的右支上一点,M、N分别是圆(x5)2y24和(x5)2y21上的点,则|PM|PN|的最大值为( D )A. 6 B.7 C.8 D.93抛物线y=-x2上的点到直线4x+3y-8=0距离的最小值是( A )A B C D4已知双曲线的左、右焦点分别为F1、F2,点P在双曲线的右支上,且|PF1|=4|PF2|,则此双曲线的离心率e的最大值为:(B)(A) (B) (C) (D)5已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 32 .6对于抛物线y2=4x上任意一点Q,点P(a,0)都满足|PQ|a|,则a的取值范围是( B )(A)(,0) (B)(,2 (C)0,2 (D)(0,2)高考要考什么【热点透析】与圆锥曲线有关的最值和范围问题的讨论常用以下方法解决:(1)结合定义利用图形中几何量之间的大小关系;(2)不等式(组)求解法:利用题意结合图形(如点在曲线内等)列出所讨论的参数适合的不等式(组),通过解不等式组得出参数的变化范围;(3)函数值域求解法:把所讨论的参数作为一个函数、一个适当的参数作为自变量来表示这个函数,通过讨论函数的值域来求参数的变化范围。(4)利用代数基本不等式。代数基本不等式的应用,往往需要创造条件,并进行巧妙的构思;(5)结合参数方程,利用三角函数的有界性。直线、圆或椭圆的参数方程,它们的一个共同特点是均含有三角式。因此,它们的应用价值在于: 通过参数简明地表示曲线上点的坐标; 利用三角函数的有界性及其变形公式来帮助求解诸如最值、范围等问题;(6)构造一个二次方程,利用判别式D0。突破重难点【例1】已知点M(-2,0),N(2,0),动点P满足条件.记动点的轨迹为W.()求W的方程;()若A,B是W上的不同两点,O是坐标原点,求的最小值.【例2】给定点A(-2,2),已知B是椭圆上的动点,F是右焦点,当取得最小值时,试求B点的坐标。【例3】已知P点在圆x2+(y-2)2=1上移动,Q点在椭圆上移动,试求|PQ|的最大值。【点睛】1.与圆有关的最值问题往往与圆心有关;2.函数法是我们探求解析几何最值问题的首选方法,其中所涉及到的函数最常见的有二次函数等,值得注意的是函数自变量取值范围的考察不能被忽视。【例4】已知椭圆的一个焦点为F1(0,-2),对应的准线方程为,且离心率e满足:成等差数列。(1)求椭圆方程;(2)是否存在直线l,使l与椭圆交于不同的两点M、N,且线段MN恰被直线平分,若存在,求出l的倾斜角的范围;若不存在,请说明理由。圆锥曲线中的最值和范围问题(二)【例5】长度为()的线段的两个端点、分别在轴和轴上滑动,点在线段上,且(为常数且)(1)求点的轨迹方程,并说明轨迹类型;(2)当=2时,已知直线与原点O的距离为,且直线与轨迹有公共点,求直线的斜率的取值范围【例6】椭圆E的中心在原点O,焦点在轴上,其离心率, 过点C(1,0)的直线与椭圆E相交于A、B两点,且满足点C分向量的比为2.(1)用直线的斜率k ( k0 ) 表示OAB的面积;(2)当OAB的面积最大时,求椭圆E的方程。【例7】设直线过点P(0,3),和椭圆顺次交于A、B两点,若试求l的取值范围.【例8】我们把由半椭圆 与半椭圆 合成的曲线称作“果圆”,其中, 如图,设点,是相应椭圆的焦点,和,是“果圆” 与,轴的交点,是线段的中点(1) 若是边

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论