全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
初中数学竞赛辅导资料(36)三点共线甲内容提要1. 要证明A,B,C三点在同一直线上, A。B。C。常用方法有:连结AB,BC证明ABC是平角连结AB,AC证明AB,AC重合连结AB,BC,AC证明ABBCAC连结并延长AB证明延长线经过点C2. 证明三点共线常用的定理有: 过直线外一点有且只有一条直线和已知直线平行 经过一点有且只有一条直线和已知直线垂直 三角形中位线平行于第三边并且等于第三边的一半 梯形中位线平行于两底并且等于两底和的一半 两圆相切,切点在连心线上 轴对称图形中,若对应线段(或延长线)相交,则交点在对称轴上乙例题例1.已知:梯形ABCD中,ABCD,点P是形内的任一点,PMAB,PNCD求证:M,N,P三点在同一直线上证明:过点P作EFAB,ABCD,EFCD12180,34180PMAB,PNCD190,39013180M,N,P三点在同一直线上例2.求证:平行四边形一组对边的中点和两条对角线的交点,三点在同一直线上已知:平行四边形ABCD中,M,N分别是AD和BC的中点,O是AC和BD的交点求证:M,O,N三点在同一直线上 证明一:连结MO,NOMO,NO分别是DAB和CAB的中位线MOAB,NOAB根据过直线外一点有且只有一条直线和已知直线平行M,O,N三点在同一直线上证明二:连结MO并延长交BC于N,MO是DAB的中位线MOAB在CAB中AOOC,ON,ABBN,N,C,即N,是BC的中点N也是BC的中点,点N,和点N重合M,O,N三点在同一直线上例3.已知:梯形ABCD中,ABCD,AB90,M,N分别是AB和CD的中点,BC,AD的延长线相交于P求证:M,N,P三点在同一直线上证明:AB90,APBRt连结PM,PN根据直角三角形斜边中线性质PMMAMB,PNDNDCMPBB,NPCBPM和PN重合M,N,P三点在同一直线上例4.在平面直角坐标系中,点A关于横轴的对称点为B,关于纵轴的对称点是C,求证B和C是关于原点O的对称点 Y解:连结OA,OB,OCA,B关于X轴对称,CAOAOB,AOXBOX同理OCOA,AOYCOYCOYBOX90OXB,O,C三点在同一直线上OBOCB和C是关于原点O的对称点B例5.已知:O1和O2相交于A,B两点,过点B的直线EF分别交O1和O2于E,F。求证:AE,AF和O1和O2的直径成比例证明:作O1和O2的直径AM,AN,连结AB,BM,BNAM,AN分别是O1和O2的直径ABMRt,ABNRtM,B,N在同一直线上ME,NFAMNAEF丙练习361. 已知:梯形ABCD中,ABCD,M,N,P分别是AD,BC,AC的中点求证:M,N,P三点在同一直线上2. 已知:ABC中,BE,CF是中线,延长BE到G,使EGBE,延长CF到H,使FHCF,求证:G,A,H三点共线3. 已知:正方形ABCD中,M,N分别是BC,CD的中点,DEAN于E,求证:点M在DE的延长线上(同33第5)4. 求证:梯形两腰中点和两条对角线的中点,四点在同一直线上5. 已知:梯形ABCD中,ABCD,A和D的平分线相交于O,求证:点O在梯形的中位线上6. 已知:ABC中,ABM,ACN分别是B,C的邻补角,从点A作B,C,ABM,CAN四个角平分线的垂线段AD,AE,AF,AG,垂足是D,E,F,G求证:D,E,F,G四点在同一直线上7. 已知:点P在等边ABC外,PA=PB+PC,以PA为一边作等边APQ使点Q和点C在PA的同一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46705-2025消费体验中心建设与服务通则
- GB/T 2673.1-2025紧固件内六角花形螺钉第1部分:降低承载能力内六角花形沉头螺钉
- 甲基硅氧烷生产工岗前安全意识考核试卷含答案
- 公司电动自行车装配工岗位职业健康及安全技术规程
- 石油勘探工安全知识竞赛水平考核试卷含答案
- 焦虑症发作症状辨析及护理策略分享
- 2025年山丹县教师招聘考试参考题库及答案解析
- 酶制剂微生物菌种工安全宣贯知识考核试卷含答案
- 2025年南平武夷山市教师招聘参考题库及答案解析
- 冠心病症状解析与护理手册培训
- 无人酒店市场拓展策略计划
- 《临床医学概论(本)》形考任务一到三答案
- 学校后勤管理工作领导小组职责
- 2022浙DT9 民用建筑常用水泵和风机控制电路图
- 胎盘亚全能干细胞研究与应用
- 2024年抖音电商年报
- 大洋环流动力学与海气相互作用课件
- 设备进口三方协议合同
- 高校物业年度工作总结
- 四川省自贡市、遂宁市、广安市等2024-2025学年高二上学期期末考试 数学 含解析
- 高素质农民培训行政第一课
评论
0/150
提交评论