已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.1.1 指数与指数幂的运算(第一课时) 本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值 1.教学重点:n次方根概念及性质、根式与分数指数幂的互化与有理指数幂的运算性质2.教学难点:根式概念、n次方根的性质、分数指数幂概念的理解及有理指数幂的运算 (1) 复习引入什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?归纳:在初中的时候我们已经知道:若,则叫做a的平方根.同理,若,则叫做a的立方根.根据平方根、立方根的定义,正实数的平方根有两个,它们互为相反数,如4的平方根为,负数没有平方根,一个数的立方根只有一个,如8的立方根为2;零的平方根、立方根均为零. (二)形成概念 零的n次方根为零,记为举例:16的次方根为,等等,而的4次方根不存在.小结:一个数到底有没有n次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n为奇数和偶数两种情况.根据n次方根的意义,可得: 肯定成立,表示an的n次方根,等式一定成立吗?如果不一定成立,那么等于什么?让学生注意讨论,n为奇偶数和a的符号,充分让学生分组讨论.通过探究得到:n为奇数,n为偶数, 如 小结:当n为偶数时,化简得到结果先取绝对值,再在绝对值算具体的值,这样就避免出现错误.例1:求下列各式的值 【分析】:当n为偶数时,应先写,然后再去绝对值. 2.观察以下式子,并总结出规律:0 小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式).根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式.如: 即:义为: 正数的定负分数指数幂的意义与负整数幂的意义相同.即:规定:0的正分数指数幂等于0,0的负分数指数幂无意义.说明:规定好分数指数幂后,根式与分数指数幂是可以互换的,分数指数幂只是根式的一种新的写法,而不是 由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即: 若0,P是一个无理数,则P该如何理解?为了解决这个问题,引导学生先阅读课本P57P58.即:的不足近似值,从由小于的方向逼近,的过剩近似值从大于的方向逼近.所以,当不足近似值从小于的方向逼近时,的近似值从小于的方向逼近.当的过剩似值从大于的方向逼近时,的近似值从大于的方向逼近,(如课本图所示) 所以,是一个确定的实数.一般来说,无理数指数幂是一个确定的实数,有理数指数幂的性质同样适用于无理数指数幂.无理指数幂的意义,是用有理指数幂的不足近似值和过剩近似值无限地逼近以确定大小.思考: 的含义是什么?由以上分析,可知道,有理数指数幂,无理数指数幂有意义,且它们运算性质相同,实数指数幂有意义,也有相同的运算性质,即: 例2(P56,例2)求值;. 例3(P56,例3)用分数指数幂的形式表或下列各式(0);.分析:先把根式化为分数指数幂,再由运算性质来运算.解:; ; .例4.计算下列各式(式中字母都是正数): ; .解:原式=2(-6)(-3);原式=说明:该例是运用分数指数幂的定义和运算性质进行计算的题,第小题是仿照单项式乘除法进行的,首先将系数相乘除,然后将同底数的幂相乘除;第小题是先按积的乘方计算,再按幂的乘方计算,在计算过程中要特别注意符号. 同学们在下面做题中,刚开始时,要严格按照象例题一样的解题步骤进行,待熟练以后再简化计算步骤.: 例5. 计算下列各式:(1) ;(2)(a0). 说明:本例是利用分数指数幂来进行根式计算,其顺序是先把根式化为分数指数幂,再根据幂的运算性质进行计算;对于计算结果,若没有特别要求,就用分数指数幂的形式表示,若有特殊要求,可根据要求给出结果,但结果不能同时含有根号和分数指数,也不能既有分母又含有负指数(三)达标检测1下列运算结果中,正确的是( )Aa2a3a5B(a2)3(a3)2C(1)01D(a2)3a6【解析】 a2a3a23a5;(a2)3a6(a3)2a6;(1)01,若成立,需要满足a1;(a2)3a6,故选A.【答案】 A2下列各式中成立的一项是( )A.7n7m B.C.(xy) D.【解析】 A中应为7n7m7;B中等式左侧为正数,右侧为负数;C中xy1时不成立;D正确【答案】 D3.(a0)的值是( )A 1BaCaDa【解析】 原式a3aaa3a.【答案】 D4计算:0.254420_. 【答案】 4现场走动管理是餐厅日常管理的重中之重,本人一直坚持当班期间严格按照二八原则进行时间分配(百分之八十的时间在管理区域现场,百分之二十的时间在做信息收集和管理总结),并直接参与现场服务,对出现的问题给予及时的纠正和提示,对典型问题进行详细记录,共性问题分析根源,制定相应的培训计划,堵塞问题漏洞,加强工作记录、考核检查表的登记;领班主管根据值班责任划分自己管辖区域,主要针对班前准备、班中督导、班后检评作书面记录,餐前准备充分性与客人个性需求作相应的指点和提醒服务,设备设施的完好状况,员工精神状态的调整。3、提升部分主题宴会服务的质量,从菜单的设计打印到配套餐具与调料的准备,特别是上菜的语言服务设计将是整个服务的点缀和装饰,开盘菜的欢迎词导入,餐中重头菜肴的介绍宣传,主食供应时的再次祝福,将时刻突出主人对主宾的尊敬热情,也通过此举服务让客人在心里更加加强对朋友盛情的美好回忆,真正达到客人宴请的物质精神双重享受。4、建立完善信息收集制度,降低投诉与提高存酒的信赖度根据上半年收集的案例汇总看基本集中在客人对存酒的凝虑,由于当时信息记录单一不全面导致客人对自己的酒水存放不放心,后经部门开会加强细化存酒服务流程,特别注重值台员、吧台的双向记录要求及自带酒水的饮用与存放的书面记录,以此避免了客人心中的顾虑,查询时可以第一时间告知客人排除凝虑。吧台人员在货架的分类上创新编号排放便于快速查找,起到了良好的效果。5、班会组织趣味活动,展示餐厅各项技能为营造快乐班会快乐工作的氛围,餐厅经常以活动的形式来组织趣味游戏,虽然时间短暂但是收获多多,拓展PK小游戏配备奖励式处罚,融洽气氛、消除工作中的隔阂,提高相互之间的信赖度有着推波助澜的作用,包括每月的消防突击演练以真正检验全员的真实性效果,提高处变不惊的能力和处理突发事件的反应,当然托盘摆台技能的比拼才是我们真正的专业,从时间与质量考验选手的日常基本功,提高服务效率。6、开展各类员工培训,提升员工综合素质本年度共开展了班会全员培训相对多一点达到46场次,业务式技能培训11场,新人入职培训5场,领班主管的自主专题培训海底捞进行4场,通过培训来达到思想意识的提高,拓展管理思路,开阔行业视野。7、全员齐努力,销售新突破根据年初部门设定的果汁饮料销售新目标,全员不懈努
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 离子交换膜材料在微纳尺度的改性研究-洞察及研究
- 合理情绪疗法与心理健康评估工具结合的研究-洞察及研究
- 2026年智能义肢与人体兼容性长期跟踪合同
- 烘焙烤炉课程介绍
- 2026年建筑医院古机器人合同
- 提升员工反应灵敏度的训练方案
- 物流运输合同风险控制措施
- 机关网络安全教育
- 高考化学一轮复习第十章化学实验基础化学实验方案的设计评价教案(2025-2026学年)
- 幼儿园中班健康饮食指导方案
- 农村承包蟹塘合同书5篇
- 2024年同等学力申硕《英语》试题真题及答案
- 第一篇病历书写基本规范
- 2025年教科版小学科学六年级上册《纸桥承重》标准课件
- 《顺丰速运战略案例》课件
- DBJ51T 189-2022 四川省建设工程施工现场安全资料管理标准
- 数控铣削加工实训报告
- 天然气利用工程中低压燃气管道工程监理实施细则
- 《工会基础知识》考试题库300题(含答案)
- 青海省地图含市县地图矢量分层地图模板
- 《精油芳香疗法》课件
评论
0/150
提交评论