已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.1.2 二次函数的图象和性质教学目标1知识与技能能够用描点法作出函数y=ax2的图象,并根据图象认识和理解其性质2过程与方法经历探索二次函数y=ax2的图象和性质的过程,体会数形结合的思想和方法.3情感、态度与价值观在初步建立二次函数表达式与图象之间的联系中,体会数形结合与转化,体会数学内在的美感教学重点难点1重点函数y=ax2的图象的画法,了解抛物线的含义,理解函数y=ax2的图象与性质2难点用描点的方法准确地画出函数y=ax2的图象,掌握其性质特征教与学互动设计(一)创设情境 导入新课导语一 回忆一次函数和反比例函数的定义,图象特征,思考二次函数的图象又有何特征呢?导语二 展示(用课件或幻灯片)具有抛物线的实例让大家欣赏,议一议这与二次函数有何联系呢?导语三 用红色的乒乓球作投篮动作,观察乒乓球的运动路线,思考运动路线有何规律?怎样用数学规律来描述呢?(二)合作交流 解读探究1函数y=ax2 的图象画法及相关名称【探究 l】画y=x2的图象学生动手实践、尝试画y=x2的图象教师分析,画图像的一般步骤:列表描点连线教师在学生完成图象后,在黑板上示范性画出y=x2的图象,如图22-1-1.【共同探究】次函数图像有何特征?特征如下:形状是开口向上的抛物线图象关于y轴对称由最低点,没有最高点.结合图象介绍下列名称:顶点;对称轴;开口及开口方向.y=x2yOx图22-1-1y=x2yOx图22-1-2y=x2y=2x22函数y=ax2的图象特征及其性质【探究2】在同一坐标系中,画出y=x2,y=2x2的图象.学生自己完成此题.教师做个别指导,在学生(大部分)完成后,教师可示范性地画出两函数的图象.如图22-1-2比较图中三个抛物线的异同.相同点:顶点相同,其坐标都为(0,0).对称轴相同,都为y轴开口方向相同,它们的开口方向都向上.不同点:开口大小不同.【练一练】画函数y=-x2,y=-x2,y=-2x2的图象.(分析:仿照探究1的实施过程)比较函数y=-x2,y=-x2,y=-2x2的图象.找出它们的异同点.相同点:形状都是抛物线.顶点相同,其坐标都为(0,0).对称轴相同,都为y轴开口方向相同,它们的开口方向都向下.不同点:开口大小不同.【归纳】y=ax2的图象特征:(1)二次函数y=ax2的图象是一条抛物线(2)抛物线y=ax2的对称轴是y轴.顶点时原点.a0时,抛物线开口向上,顶点时抛物形的最低点.a0时,开口向上.a0时,开口向下.|a|越大,开口越小.(四)总结反思 拓展升华【总结】1.本节所学知识:二次函数y=ax2的图象的画法.二次函数y=ax2的图象特征及其性质.2.本节所用的方法:实践比较法【反思】函数y=ax2与y=-ax2的图象之间有何关系?(它们关于x轴对称)【拓展】已知函数y=ax2经过(1,2).(1)求a的值.(2)当x0时,y的值随x的增大而变化的情况解:(1)将x=1,y=2代入y=ax2中,得2=a12 a=2.(2)根据函数y=2x2知x0时y随x的增大而减小.【点评】通常用待定系数法函数y=ax2中只有一个待定系数a,故知道其图象上一点坐标或x,y的一组对应值就可求出解析式.结合图象知:x0时,x的值增大时,图像上的点的位置越来越低,故y的值越来越小,即y随x的增大而减小.(五)当堂检测反馈1. 抛物线y=4x2中的开口方向是 向上 ,顶点坐标是 (0,0),对称轴是 y轴 .抛物线y=-x2的开口方向是 向下 ,顶点坐标是 (0,0),对称轴是 y轴 .2. 二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a= 2 .【分析】a与-2互为相反数3. 在同一坐标系中:y=,y=-x2,y=2x2这三个函数图象开口最大的是,最小的是y=2x2,开口向下的是y=-x2.解: |-1|2|,抛物线的开口最大,抛物线开口最小.函数y=-x2中,二次项系
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 发展足球文化交流的推广机制
- 衣柜五一活动方案
- 蛋糕店活动抽奖活动方案
- 地铁应急复盘范本
- 办公设备维护方案
- 环保主题电子报设计及内容模板
- 装修公司交房策划方案
- 蜘蛛机器人活动方案
- 规范民俗活动方案
- 装修公司话术活动方案
- 教育职业求职展示模板
- 化工企业员工手册
- 2024四川甘孜州公安局招聘警务辅助人员40人笔试备考题库及答案解析
- 南京市玄武区2024年九年级上册《道德》期中试题与参考答案
- OCT在神经疾病研究中的应用
- 【陕西】黄陵县乡村振兴试点村阿D村规划方案
- 人格心理学完整版本
- 2024年华能(苏州工业园区)发电有限责任公司招聘笔试参考题库含答案解析
- Unit3EnvironmentalProtection单元作业设计高二英语人教版选择性
- 龙的传人四声部合唱简谱
- 人力资源管理的最佳实践教程
评论
0/150
提交评论