用整体思想法解数学题.doc_第1页
用整体思想法解数学题.doc_第2页
用整体思想法解数学题.doc_第3页
用整体思想法解数学题.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

用整体思想法解数学题用整体思想法解数学题,就是把一些看似彼此独立而实质是紧密相联的量看成一个整体去设元、列式、变形、消元、代入或求值等。这样做,不仅可以摆脱固定模式的束缚,使复杂的问题变得简单,陌生的问题变得熟悉,还往往可以解决按常规方法解决不了的一些问题。例1 分解因式分析:若把两个二次三项式与相乘,则将得到一个四次多项式,这时再分解因式就十分困难。但若把(或)视为一个整体,即把看成一个新变元t,原式就变形为关于t的二次多项式,问题就容易解决了。解:设,则原式再将代入上式原式说明:由上例可以看出,对某些多项式的因式分解,如果前一项的两个因式中只是常数项不同,则可将它们中的相同部分看成一个整体,用换元法可以降次,简化解题过程。例2 解方程解:设,则原方程可变为解得,当时,解得;当时无解经检验,是原方程的解。说明:本题是把看成一个整体,恰当换元,才能化繁就简。例3 计算解:设,则原式说明:这是一类规律探索型问题,看似复杂吓人,若掌握了整体换元思想,并不难解。例4 已知和成正比例(其中m、n是常数)(1)求证:y是x的一次函数;(2)如果时,;时,求这个函数的解析式。解:(1)因与成正比例,故可设整理可得因,、为常数,所以y是x的一次函数。(2)由题意可得方程组解得,.故所求的函数解析式为。说明:在解方程组时,单独解出k、n、m是不可能的,也是不必要的。故将看成一个整体求解,从而求得函数解析式。例5 有甲、乙、丙三种货物,若购甲3件,乙7件,丙1件,共需3.15元;若购甲4件,乙10件,丙1件,共需4.20元。现在计划购甲、乙、丙各1件,共需多少元?分析:要求的未知数是三个,而题设条件中只有两个等量关系,企图把甲、乙、丙各1件的钱数一一求出来是不可能的,若把甲、乙、丙各1件的钱数看成一个整体,问题就可能解决。解:设购甲、乙、丙各1件分别需x元、y元、z元。依题意,得,即解关于,的二元一次方程组,可得(元)答:购甲、乙、丙各1件共需1.05元。说明:由于我们所感兴趣的不是x、y、z的值,而是这个整体的值,所以目标明确,直奔主题,收到了事半功倍的效果。练习:1. 分解因式。2. 解方程。3. 设y与x的函数关系式为(k、a、b为常数),且时,y=19,x=3时,y=20。求此函数的解析式。4. 已知,求代数式的值。5. 一个四位数,其首位上的数字为1,若把首位移作末位,则新的四位数是原数的4倍还多1995,试求原来的四位数。6. 甲、乙两人相距100km,两人同时出发,相向而行,甲每小时走6km,乙每小时走4km;甲带的一只狗,同甲一起出发,每小时走10km,碰到乙时它往甲方向走,碰到甲时它又往乙方向走,如此连续往返,到甲、乙两人相遇时,这只狗一共走了多少千米?7. 有大小两种货车,2辆大车和3辆小车一次可运货15.5t,5辆大车和6辆小车一次可运货35t,求3辆大车和5辆小车一次可运货多少吨。参考答案及提示:1. 2. ,。3. 4. 55. 设原来的四位数去掉首位的后三位数为x,则原来的四位数可表示为,新四位数可表示为,由题意得,解得x=999,故原来的四位数为1999。6. 由出发时起,直到甲、乙相遇为止,小狗以每小时10km

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论