




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 3 1函数的单调性 t 气温t是关于时间t的函数曲线图 4 8 12 16 20 24 t o 2 2 4 8 6 10 思考 气温发生了怎样的变化 在哪段时间气温升高 在哪段气温降低 观察下列各个函数的图象 并说说它们分别反映了相应函数的哪些变化规律 1 观察这三个图象 你能说出图象的特征吗 2 随x的增大 y的值有什么变化 画出函数f x x的图象 观察其变化规律 1 从左至右图象上升还是下降 2 在区间 上 随着x的增大 f x 的值随着 增大 上升 1 在区间 上 f x 的值随着x的增大而 2 在区间 上 f x 的值随着x的增大而 0 0 增大 减小 画出函数f x x2的图象 观察其变化规律 如何利用函数解析式f x x2来描述图象这种变化规律 一 函数单调性定义 一般地 设函数y f x 的定义域为i 如果对于定义域i内的某个区间d内的任意两个自变量x1 x2 当x1 x2时 都有f x1 f x2 那么就说f x 在区间d上是增函数 1 增函数 一 函数单调性定义 一般地 设函数y f x 的定义域为i 如果对于定义域i内的某个区间d内的任意两个自变量x1 x2 当x1f x2 那么就说f x 在区间d上是减函数 2 减函数 1 函数的单调性是针对定义域内的某个区间而言的 是函数的一个局部性质 注意 2 必须是对于区间d内的任意两个自变量x1 x2 当x1f x2 分别是增函数和减函数 判断 定义在r上的函数f x 满足f 2 f 1 则函数f x 在r上是增函数吗 例如 y x在整个定义域 上单调递增 y x2在 0 单调递增 在 0 单调递减 如果函数y f x 在某个区间d上是增函数或是减函数 那么就说函数y f x 在这一区间具有 严格的 单调性 区间d叫做y f x 的单调区间 二 函数单调区间定义 y y 1 y 2x 1 增区间为 增区间为 减区间为 减区间为 4 y 2 无单调性 o 例1 下图是定义在区间 5 5 上的函数y f x 根据图象说出函数的单调区间 以及在每个区间上 它是增函数还是减函数 解 函数y f x 的单调区间有 5 2 2 1 1 3 3 5 其中y f x 在区间 5 2 1 3 上是减函数 在区间 2 1 3 5 上是增函数 例2 物理学中的玻意耳定律告诉我们 对于一定量的气体 当其体积v减小时 压强p将增大 试用函数的单调性证明之 证明 根据单调性的定义 设v1 v2是定义域 0 上的任意两个实数 且v1 v2 则 由v1 v2 0 且v10 v2 v1 0 又k 0 于是 所以 函数是减函数 也就是说 当体积v减少时 压强p将增大 取值 定号 结论 三 函数单调性的方法步骤 1取值 任取x1 x2 d 且x1 x2 2作差 f x1 f x2 3变形 通常是因式分解或配方等 4定号 即判断差f x1 f x2 的正负 5结论 即指出函数f x 在给定的区间d上的单调性 利用定义证明函数f x 在给定的区间d上的单调性的一般步骤 证明 设x1 x2是 0 上任意两个实数 且x1 x2 则 f x1 f x2 由于x1 x2得x1x2 0 又由x10所以f x1 f x2 0 即f x1 f x2 因此f x 1 x在 0 上是减函数 取值 定号 变形 作差 判断 证明 函数f x 在 0 上是减函数 四 归纳小结 函数的单调性一般是先根据图象判断 再利用定义证明 求函数的单调区间时必须要注意函数的定义域 单调性的证明一般分五步 取值 作差 变形 定号 下结论 数与形 本是相倚依 焉能分作两边飞 数无
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论